Using Virtual Reality Technologies in Built Environment Education

Missouri University of Science and Technology Rebekah Floyd, Kayla Walters and Stuart W. Baur, Ph.D.

Background

- Future forecast is good both world wide and here at home because VR is becoming more accessible and more user friendly.
- A new vision of VR as a discipline-agnostic platform for integrating the allied design, social, and environmental disciplines to address emerging challenges across the building sector.
- VR in the built environment education refers to the use of immersive technology to enhance teaching and learning experiences related to architecture, engineering, and construction.

Benefits

- Immersive learning experience
- Enhanced hands-on training
- Visualizing complex concepts
- Collaborative learning
- Access to diverse environments
- Enhanced creativity and design skills
- **Real-world application**
- Interdisciplinary decision making
- **Evaluating alternative solutions**
- Reduce the need for physical models, site visits, and travel expenses -> cost savings

Trends

- Increased attention to augmented reality (AR) and virtual reality (VR) technologies among those with more industry experience.
- Rise in employees' familiarity and expertise with AR/VR, especially in smaller companies.
- More cost and time savings through AR/VR and building information modeling (BIM)
- Positive trend in acceptance of AR/VR adoption and awareness in the building industry

References

- Nikolić, Dragana, and Jennifer Whyte. 2021. "Visualizing a New Sustainable World: Toward the Next Generation of Virtual Reality in the Built Environment" Buildings 11, no. 11: 546. https://doi.org/10.3390/buildings11110546 Schumacher, A.; Sihn, W.; Erol, S. Automation, Digitization and Digitalization and Their Implications for Manufacturing Processes. In Proceedings of the Innovation and Sustainability Conference, Bucharest, Romania, 28–29 October 2016.
- Khashe, S.; Lucas, G.; Becerik-Gerber, B.; Gratch, J. Establishing Social Dialog between Buildings and Their Users. Int. J. Hum. -Comput. Interact. 2018, 35, 1545–1556. 3.
- Whyte, J.; Comi, A.; Mosca, L. Making Futures That Matter: Future Making, Online Working and Organizing Remotely. Organ. Theory 2022. Forthcoming. 4.
- Nikoli'c, D.; Maftei, L.; Whyte, J. Becoming familiar: How infrastructure engineers begin to use collaborative virtual reality in their interdisciplinary practice. J. Inf. Technol. Constr. 2019, 24, 489-508. Simmons, S., M., Baur, S., W., Pickerill, H., A., "Creating Smarter Exterior Lighting Designs for Public Safety and Well-Being, Energy Conservation, and Light Pollution Reduction," Architectural Engineering Institute 2023 - Climate Conscientiousness and Resilience: The Need for Integrated Building Solutions, Denver, CO, April 12-14, 2023 6.

Discipline	Spatial	Time	Tasks/Goals	VR Use and
	Scale	Scale		Opportunities
Architectural	Site,	Long,	Aesthetics,	Design development,
Design	building	design for	functionality,	evaluation, design
	space, and	stasis	wayfinding,	reviews, and design
	components		access	marketing
Engineering	Regional,	Long,	Functionality,	Design testing and
Design	site,	design for	accessibility	review, (dis)assembly,
	systems, &	stasis		operations training
	components			
Construction	Regional,	Short,	Process-	Sequencing, clashes, site
	urban, site	temporary	oriented,	logistics, equipment
	or systems		logistics	operations, & site access

Interdisciplinary Environment

- Challenges:
 - Scale the engineering design and construction disciplines often Ο operate at a regional scale.
 - <u>Time</u> Length of time for both architectural and engineering disciplines Ο are complimentary while construction varies.
 - Data While there is carryover of functionality, the construction industry Ο views it as a tool for process-oriented logistics
- Opportunities: realistic modeling, minimize conflict and miscommunication, and exchange data

Barriers to Implementation

- Cost and accessibility of the VR headsets and the corresponding display equipment can cause a challenge in higher education.
- Technical complexity, curriculum integration, teaching strategies, facilities, content creation, quality, assessment and evaluation are all challenges that need to be addressed to realize the full potential of VR in enhancing built environment education.
- Upper management's lack of knowledge about AR/VR

Transferring BIM information and enabling group meetings in virtual spaces

MODEL DEVELOPMENT ENVIRONMENT

The Future of VR

- Integrate virtual reality usage into school curriculums
- Establish a repository of 3D and VR models for built environment education
- Residential and commercial projects lead in AR/VR, signaling industry-wide growth
- There may be a wider adoption as tools become more accessible and employee familiarity increases

INTERACTIVITY