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 Carbon neutrality is a new paradigm for the modern  Carbon neutrality is a new paradigm for the modern 
world in the light of climate crisis. However, the actu-world in the light of climate crisis. However, the actu-
al methods available for CO2 dissociation present a al methods available for CO2 dissociation present a 
challenge due to their high energy cost and inefficien-challenge due to their high energy cost and inefficien-
cies. A special integrated system of CO2 reduction cies. A special integrated system of CO2 reduction 
to CO for nuclear reactors via ionizing radiation may to CO for nuclear reactors via ionizing radiation may 
present a new solution.present a new solution.
 Such a system, too, represents a high cost of man- Such a system, too, represents a high cost of man-
ufacturing and testing; thus, simulation of CO2 disso-ufacturing and testing; thus, simulation of CO2 disso-
ciation may be used to assess the viability of nuclear ciation may be used to assess the viability of nuclear 
reactor CO2 reduction systems.reactor CO2 reduction systems.
 There are already empirical results for electromag- There are already empirical results for electromag-
netic radiation-induced CO2 dissociation available, netic radiation-induced CO2 dissociation available, 
so this simulation endeavor will focus on ion impacts so this simulation endeavor will focus on ion impacts 
from fuel fragments.from fuel fragments.

• • There are numerous quantum chemistry packages There are numerous quantum chemistry packages 
available.available.

    MOPAC, NWChem, ORCA, Q-Chem MOPAC, NWChem, ORCA, Q-Chem
• • There are many molecular dynamics applicaitons.There are many molecular dynamics applicaitons.

    LAMMPS, Q, VENUS LAMMPS, Q, VENUS
• • Unmet need for independent quantum mechanical Unmet need for independent quantum mechanical 
trajectory dynamics.trajectory dynamics.

• • Solution: An interface between a quantum chemistry Solution: An interface between a quantum chemistry 
package and classical dynamics program.package and classical dynamics program.

• • VENUS/NWChem chosen based on existing re-VENUS/NWChem chosen based on existing re-
search.search.1-31-3

• • Density Functional Theory (DFT) manages atom Density Functional Theory (DFT) manages atom 
bonds using electron density.bonds using electron density.

   Geared toward ground-state, static systems.Geared toward ground-state, static systems.
• • Time-Dependent DFT (TDDFT) functions similarly to Time-Dependent DFT (TDDFT) functions similarly to 
DFT, but is intended for time-dependent processes.DFT, but is intended for time-dependent processes.

   Can manage excited states.Can manage excited states.
   Provides approximate, but more accurate, re-Provides approximate, but more accurate, re-
sults than DFT. sults than DFT. 
   Significantly more expensive computationally.Significantly more expensive computationally.44

• • TDDFT is the ideal quantum mechanical algorithm for TDDFT is the ideal quantum mechanical algorithm for 

There are several key elements to consider:There are several key elements to consider:
• • Pressurization of simulated CO2 vessel:Pressurization of simulated CO2 vessel:

   Managed using simulation cell size control.Managed using simulation cell size control.
• • Ions involved in impact:Ions involved in impact:

   All ions involved in the nuclear decay chain All ions involved in the nuclear decay chain 
(U-235 shown on the left) will be considered (U-235 shown on the left) will be considered 
candidates for CO2 impact.candidates for CO2 impact.

• • Trajectories:Trajectories:
   Different orientations of CO2 covered by set-Different orientations of CO2 covered by set-
ting up a “trajectory grid” (see left, below).ting up a “trajectory grid” (see left, below).

   Each square represents a trajectory Each square represents a trajectory 
simulation.simulation.

   Trajectory grid performed for each ion.Trajectory grid performed for each ion.

Figure: Actinium series decay chain, taken from https://en.wikipedia.org/wiki/Decay_chainFigure: Actinium series decay chain, taken from https://en.wikipedia.org/wiki/Decay_chain

Figure: Grid overlay of simulated CO2 atom, with theoretical ion trajectories marked.Figure: Grid overlay of simulated CO2 atom, with theoretical ion trajectories marked.
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