MISSOURI

INTRODUCTION

Carbon neutrality is a new paradigm for the modern world in the light of climate crisis. However, the actual methods available for CO2 dissociation present a challenge due to their high energy cost and inefficiencies. A special integrated system of CO2 reduction to CO for nuclear reactors via ionizing radiation may present a new solution.

Such a system, too, represents a high cost of manufacturing and testing; thus, simulation of CO2 dissociation may be used to assess the viability of nuclear reactor CO2 reduction systems.

There are already empirical results for electromagnetic radiation-induced CO2 dissociation available, so this simulation endeavor will focus on ion impacts from fuel fragments.

SOFTWARE

- There are numerous quantum chemistry packages available.
- MOPAC, NWChem, ORCA, Q-Chem 0 There are many molecular dynamics applications. LAMMPS, Q, VENUS 0
- Unmet need for independent quantum mechanical trajectory dynamics.
- Solution: An interface between a quantum chemistry package and classical dynamics program.
- VENUS/NWChem chosen based on existing research.¹⁻³

Simulation of CO2 Reduction via Ion Impact in-Reactor Wesley Moore and Dr. Carlos Castaño Giraldo

Figure: Grid overlay of simulated CO2 atom, with theoretical ion trajectories marked.

Nuclear Engineering and Radiation Science

SIMULATION METHOD

 Density Functional Theory (DFT) manages atom bonds using electron density. Geared toward ground-state, static systems. Time-Dependent DFT (TDDFT) functions similarly to DFT, but is intended for time-dependent processes. Can manage excited states. Provides approximate, but more accurate, results than DFT. Significantly more expensive computationally.⁴ • TDDFT is the ideal quantum mechanical algorithm for

SIMULATION DESIGN

There are several key elements to consider: Pressurization of simulated CO2 vessel: Managed using simulation cell size control. Ions involved in impact: All ions involved in the nuclear decay chain (U-235 shown on the left) will be considered candidates for CO2 impact. • Trajectories:

 Different orientations of CO2 covered by setting up a "trajectory grid" (see left, below). + Each square represents a trajectory simulation. Trajectory grid performed for each ion.

[1] Lourderaj, U., Sun, R., Kohale, S. C., Barnes, G. L., de Jong, W. A., Windus, T. L., & Hase, W. L. (2014). The Venus/nwchem software package. tight coupling between chemical dynamics simulations and electronic structure theory. Computer Physics Communications, 185(3), 1074–1080. [2] Borges, R. M., Colby, S. M., Das, S., Edison, A. S., Fiehn, O., Kind, T., Lee, J., Merrill, A. T., Merz, K. M., Metz, T. O., Nunez, J. R., Tantillo, D. J., Wang, L.-P., Wang, S., & Renslow, R. S. (2021). Quantum Chemistry calculations for Metabolomics. Chemical Reviews, 121(10), 5633-5670. [3] Lourderaj, U., Song, K., Windus, T. L., Zhuang, Y., & Hase, W. L. (2007). Direct dynamics simulations using Hessian-based predictor-corrector integration algorithms. The Journal of Chemical Physics, 126(4), 044105. [4] López-Tarifa, P., Grzegorz, D., Piekarski, Rossich, E., Penhoat, M.-A. H., Vuilleumier, R., Gaigeot, M.-P., Tavernelli, I., Politis, M.-F., Wang, Y., Díaz-Tendero, S., Martín, F., & Alcamí, M. (2014). Ultrafast nonadiabatic fragmentation dynamics of biomolecules. Journal of Physics: Conference Series, 488(1), 012037.

Uranium Protactinium Thorium Actinium Radium Francium Astatine ²¹¹84**PO** Polonium Bismuth ²⁰⁷ **Pb**

REFERENCES