Ligand Exchange on Semiconductor Nanocrystals

Enhancement of the Charge-Transfer Process in Photoconductive and Photorefractive Nanocomposites

Jamie Christensen (OURE), Eric Deck (OURE), Dillon Thompson (OURE), Bennett Scott (FYRE), Jeffrey Winiarz (Dept. of Chem.)

Introduction

Advancements in semiconductor nanocrystal synthesis allow for their use in as photosensitizers in a variety of applications. However, traditional syntheses render the nanocrystals passivated with electrically insulative molecules such as trioctylphosphine. We speculate that here the charge-transfer process will be enhanced by replacing the native ligands with ones more conducive to the charge-transfer process.

Colloidal Synthesis of QCdSe

CT Molecules Studied

PVK ECZ TPD

Ligand Exchange on QCdSe

CdSe + PVK or ECZ or TPD

\[\text{CdSe} + \text{PVK or ECZ or TPD} \rightarrow \text{CdSe} \]

Device Compositions

PVK: 33 wt%
ECZ: 33 wt%
TPD: 33 wt%
QCdSe: 1 wt%

Absorbance, \(\alpha \) [A.U.]

Wavelength, \(\lambda \) [nm]

Absorbance, \(\alpha \) [A.U.]

Device Absorbenes

\[d = 6.4 \text{ nm} \]
\[3.0 \times 10^{-7} \text{ M} \]
\[0.15 \text{ mg/mL} \]

\[\text{Control} \]
[]
[]

\[\text{TPD90} \]
[]
[]

\[\text{TPD70} \]
[]
[]

\[\text{PVK90} \]
[]
[]

\[\text{PVK70} \]
[]
[]

\[\text{ECZ70} \]
[]
[]

\[\Phi = \frac{N_{cc}}{N_{ph}} = \frac{\sigma_{ph} h e E}{\lambda \alpha d^2} \]

Photo/Dark Conductivity, \(\sigma_{ph}/\sigma_d \) vs External Field

\(\sigma = \frac{V}{CRE} \)

Quantum Efficiency vs External Field

\[\text{Control} \]
[]
[]

\[\text{TPD90} \]
[]
[]

\[\text{TPD70} \]
[]
[]

\[\text{PVK90} \]
[]
[]

\[\text{PVK70} \]
[]
[]

\[\text{ECZ70} \]
[]
[]

Conclusion

An enhancement in PC was not observed, however, a substantial decrease in DC was. While not anticipated, this approach may be useful for applications where the PC/DC is the relevant figure of merit, such as in photorefractive applications. Future studies will focus on determining the underlying reason for this behavior, which is likely rooted in a modification of the QCdSe surface characteristics, as well as the exploration of this approach in photorefractive composites.