Disrupting phosphoregulation leads to cytokinesis defects

Emily M. Butts and Katie B. Shannon
Department of Biological Sciences, Missouri S&T, Rolla, MO

Abstract

Cytokinesis is the process by which cells divide and split off from one another via a contractile actomyosin ring. Actomyosin ring formation is characterized by the recruitment of filamentous actin (F-actin) and myosin II. Budding yeast is a simple eukaryotic system to examine the molecular process of actomyosin ring assembly and contraction. Iqg1 is required for actin localization to the site of cytokinesis and is regulated by phosphorylation and dephosphorylation. A strain with a mutation in Iqg1 that prevents dephosphorylation causes cytokinesis defects. The mutant phenotype was further analyzed by examining actin ring formation. Since human homologs of Iqg1 are involved in cancer and cytokinesis failure can cause aneuploidy as seen in tumor cells, this research could ultimately lead to new targets for chemotherapy.

Applications to Cancer Research

Research suggests IQGAP1 has numerous implications in cancer development. The main functions of this protein directly related to the progression of certain cancers include regulation of cytoskeletal arrangement and cell transformation. It is suspected to stimulate β-catenin- and ERK-dependent pathways. IQGAP1 is typically detected in the cell membrane, where it influences cell adhesion, migration, and growth signaling.

References