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We revisit the magnetic properties of the hexagonal ferrite PbFe12−xGaxO19. Recent experiments 

have reported puzzling dependencies of the ordering temperature and the saturation magnetization 
on the Ga concentration x. To explain these observations, we perform large-scale Monte Carlo 
simulations, focusing on the effects of an unequal distribution of the Ga impurities over the five 
distinct Fe sublattices. Ab-initio density-functional calculations predict that the Ga ions preferably 
occupy the 12k sublattice and (to a lesser extent) the 2a sublattice. We incorporate this insight into 
a nonuniform model of the Ga distribution. Monte Carlo simulations using this model lead to an 
excellent agreement between the theoretical and experimental values of the ordering temperature and 
saturation magnetization, indicating that the unequal distribution of the Ga impurities is the main 
reason for the unusual magnetic properties of PbFe12−xGaxO19. We also compute the temperature 

and concentration dependencies of the sublattice magnetizations, and we study the character of the 
zero-temperature transition that takes place when the ordering temperature is tuned to zero. 

 
I. INTRODUCTION 

 
Recent years have seen renewed interest in the prop- 

erties of hexagonal ferrites (hexaferrites). These mate- 
rials have numerous technological applications including 
permanent magnets, magnetic recording and data stor- 
age devices, as well as high-frequency electronics [1, 2]. 
In addition, they feature interesting magnetic and ferro- 
electric quantum behavior at low temperatures [3–5]. 

The magnetic properties of hexaferrites can be tuned 
by diluting the magnetic degrees of freedom. Several 
experimental studies [5–7] reported the results of ran- 
domly substituting nonmagnetic Ga ions for the mag- 
netic Fe ions in magnetoplumbite, PbFe12O19. Magne- 
toplumbite is a Lieb-Mattis type ferrimagnet [8] with 
a magnetic ordering temperature Tc of about 720 K 
and a low-temperature saturation magnetization Ms of 
20µB per formula unit. The magnetic ordering temper- 
ature of PbFe12−xGaxO19 decreases with increasing Ga 
concentration x and vanishes at a critical concentration 
xc ≈ 8.6. The value of xc is very close to the site percola- 
tion threshold of the lattice spanned by the exchange in- 
teractions between the Fe ions, suggesting that the zero- 
temperature magnetic phase transition at xc is of perco- 
lation type [5]. The magnetic phase boundary can be ap- 
proximated well by the relation Tc(x) = Tc(0)(1 − x/xc)ϕ 
with ϕ = 2/3 over the entire concentration range. Inter- 
estingly, the low-temperature saturation magnetization 
Ms decreases much faster with x than Tc, as is shown in 
Fig. 1. 

To explain these findings, Khairnar et al. [9] per- 
formed Monte Carlo simulations of a randomly diluted 
Heisenberg model, employing the magnetoplumbite crys- 
tal structure and realistic exchange interactions. As 
shown in Fig. 1, the results of these simulations did not 
agree with the experimental data. Specifically, the or- 
dering temperature predicted by the simulations is lower 
than the experimental values and does not follow the 

striking 2/3 power law, whereas the saturation magneti- 
zation predicted by the simulations is significantly higher 
than the experimental findings. This is a puzzling situ- 
ation for at least two reasons. First, while it is rela- 
tively easy to identify possible mechanisms that could 
lead to a faster reduction of Tc with x compared to a 
simple Heisenberg Hamiltonian (e.g., frustrating inter- 
actions, non-collinear order, or quantum fluctuations) it 
is harder to find reasons for the experimental Tc to de- 

 
 
 

 
FIG. 1. Magnetic ordering temperature Tc (top) and low- 
temperature saturation magnetization Ms per formula unit 
(bottom) of PbFe12−xGaxO19 as functions of the Ga concen- 

tration x. The experimental data for Tc are taken from Refs. 
[5, 7], and the Ms data stem from Refs. [6, 7]. The solid line 
represents the 2/3-power law for Tc put forward in Ref. [5]. 
The Monte Carlo simulations assumed a uniform distribution 
of the Ga atoms over all available iron sites. The results for Tc 

are from Ref. [9] whereas those for Ms were computed here, 
using the algorithm of Ref. [9]. 
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FIG. 2. Double unit cell of PbFe12O19. Twelve Fe3+ ions per 
unit cell are located on five distinct sublattices. 

 

 
cay more slowly than the model calculation. Second, one 
would usually assume that a mechanism that increases Tc 
to also increase Ms, but the experimental Ms values are 
below the simulation results. In summary, these finding 
imply that our understanding of the magnetic properties 
of the diluted hexaferrites remains incomplete, especially 
at higher dilutions. 

The M -type hexaferrites PbFe12O19, BaFe12O19 and 
SrFe12O19 crystalize in the magnetoplumbite structure 
presented in Fig. 2. The twelve Fe3+ ions per unit cell, 
each in the S=5/2 spin state, are located on five dis- 
tinct sublattices: 6 ions on the octahedral 12k sublattice, 
one ion on the octahedral 2a sublattice, one ion on the 
pseudohexahedral 2b sublattice, two ions on the tetra- 
hedral 4fIV sublattice, and two ions on the octahedral 
4fVI sublattice. Below Tc of about 720 K, the spins fea- 
ture collinear ferrimagnetic order with eight spins (12k, 
2a, and 2b) pointing up and four spins (4fIV and 4fVI) 
pointing down. 

As the crystal structure contains five inequivalent iron 
sublattices, the distribution of the gallium ions over these 
sublattices can be expected to play an important role for 
the magnetic properties. In fact, this question has been 
considered in several publications in the literature, with 
inconclusive results. Marysko et al. [6] concluded from 
their magnetic measurements and ferromagnetic reso- 
nance experiments that the Ga3+ ions are distributed 
over all sublattices except the 2b sublattice, at least for 
x up to about 4 (in analogy with earlier results for other 
hexaferrites [10, 11]). In contrast, Albanese et al. [7] more 
recently reported accurate Mössbauer measurements in- 
dicating that the Ga3+ ions are distributed over all five 

sublattices with nearly equal probability (even though 
a slightly higher gallium concentration in the spin-up 
sublattices could not be excluded).  For the related 
compound SrFe12−xGaxO19 (whose Tc(x) curve is virtu- 

ally indistinguishable from that of PbFe12−xGaxO19 [7]), 
Mössbauer studies [12] suggested that the Ga ions prefer- 
ably occupy the octahedral 4fVI site. First-principle cal- 
culations [13], in contrast, show a strong preference of 
the Ga ions for the 12k sublattice. 

The percolation calculations in Ref. [5] as well as the 
Monte Carlo simulations of Ref. [9] were performed under 
the assumption that the Ga impurities are distributed 
with equal probability over all sublattices. In view of 
the disagreement between the magnetic measurements 

on PbFe12−xGaxO19 and the results of the Monte Carlo 
simulations in the literature, it is prudent to revisit this 
assumption. 

In the present paper, we therefore combine ab-initio 
density functional calculations and large-scale Monte 
Carlo simulations to systematically study how an un- 
equal gallium distribution over the available sublattices 

affects the magnetic properties of PbFe12−xGaxO19. Our 
results can be summarized as follows. According to the 
density functional calculations, the 12k sublattice is the 
most favorable location for the Ga3+ ions, followed by the 
2a sublattice. Ga3+ ions in any of the other sublattices 
lead to significantly higher total energies. We use this 
insight to construct a diluted Heisenberg Hamiltonian 
with a biased distribution of spinless impurities. Monte 
Carlo simulations of this Hamiltonian lead to an excel- 
lent agreement between the experimental data for the 
ordering temperature Tc and the low-temperature satu- 
ration magnetization Ms and the corresponding simula- 
tion results. This indicates that the unequal distribution 
of gallium impurities is the main reason for the unusual 

magnetic behavior of PbFe12−xGaxO19. 
The rest of the paper is organized as follows. In Sec. 

II, we introduce the site-diluted Heisenberg Hamiltonian, 
and we discuss the density functional calculations that in- 
form our model of the impurity distribution. The Monte 
Carlo simulation methods and data analysis techniques 
are described in Sec. III. Section IV is devoted to the sim- 
ulation results and the comparison with the experimental 
data. We conclude in Sec. V. 

 

 
II. MODEL 

 
A. Site-diluted Heisenberg Hamiltonian 

 
The high spin value S = 5/2 of the Fe3+ ions and 

the high ordering temperature of about 720 K for the 
undiluted compound suggest that a classical approach 
to the magnetic degrees of freedom should provide a 
good approximation.  To describe the magnetism of 

PbFe12−xGaxO19, we therefore define a classical Heisen- 
berg model by placing either a classical Heisenberg spin 
or a vacancy on each Fe site in the hexaferrite crystal 
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sublattice pair 2a − 4fIV  2b − 4fVI  12k − 4fIV  12k − 4fVI 

Kij 5 meV 5 meV 3.5 meV 5 meV 

Jij 439 K 439 K 311 K 439 K 

 
TABLE I. Values of the exchange interactions. Kij denotes 

the interactions computed in Ref. [15] for Ueff = 6.7. We 
have absorbed the values of the magnetic moments into the 
interactions Jij used in the Heisenberg Hamiltonian (1) and 

scaled them with a constant factor c = 1.212 to reproduce the 
clean ordering temperature of 720 K, i.e., Jij = (5/2)2cKij 

 
structure. The Hamiltonian is given by 

[6, 7] are inconclusive and partially contradict each other. 
We have therefore performed ab-initio density functional 
calculations which suggest a non-uniform Ga 
distribution which has a strong bias towards the 12k 
sublattice and smaller bias towards the 2a sublattice. 

 
To model a nonuniform vacancy distribution in the 

Heisenberg Hamiltonian (1), we introduce weights w(2a), 
w(2b), w(4fIV), w(4fVI), and w(12k) that modify the va- 
cancy probability compared to the uniform case. Specif- 
ically, the vacancy probability in sublattice Y is given 

H = J 

i,j 

ijϵiϵj SiSj . (1) 
by w(Y ) p. Note that the weights have to fulfill the con- 
straint 

 
w(2a)+w(2b)+2w(4fIV)+2w(4fVI)+6w(12k) = 12 (2) 

Here, Si is an O(3) unit vector at site i.  The ex- 
change interactions Jij are all positive, i.e., antiferromag- 
netic. We base their values on density functional calcula- 
tions in Refs. [14, 15] (for BaFe12O19) and Ref. [16] (for 
SrFe12O19). The resulting interactions depend weakly 
on the value of Ueff assumed in the density functional al- 
gorithm, and they vary somewhat between the different 
calculations. However, scaling the interactions by a com- 
mon factor to reproduce the clean ordering temperature 
Tc = 720K of the undiluted material suppresses most 
of these variations. In our simulations, we only include 
the strongest interactions which are between the follow- 
ing sublattice pairs: 2a − 4fIV, 2b − 4fVI, 12k − 4fIV, 
12k − 4fVI. Their values are listed in Table I. These in- 
teractions are non-frustrated and establish the ferrimag- 
netic order. We will discuss in the concluding section 
the effects of additional couplings which are significantly 
weaker but frustrate the ferrimagnetic order. We em- 
ploy the exchange interactions computed for the undi- 
luted system for our simulations in entire x-range. This 
neglects variations of the interactions caused by changes 
in the lattice geometry due the substitution of Fe ions 
by Ga ions. These changes are expected to be small be- 
cause of the small difference between the ionic radii of 
Ga3+ (0.62 ̊ A )  and Fe3+ (0.64 ̊ A )  cations [17]. 

The ϵi are independent quenched random variables 
that implement the site dilution. The can take the val- 
ues 0 (vacancy) with probability pi and 1 (occupied site) 
with probability 1 − pi. In the simulations performed in 
Ref. [9], all lattice sites were assumed to feature the same 
vacancy probabilities, pi = p which is related to the av- 
erage number of Ga ions in the unit cell via p = x/12. 
The goal of the present paper is to explore the effects of 
deviations from such a uniform Ga distribution. Nonuni- 
form Ga distributions are discussed in detail in the next 
subsection. 

 
 

B. Distribution of the Ga impurities 

 
As pointed out in Sec. I, the available results on the 

distributions of the Ga ions over the five Fe sublattices 

 
to ensure that the overall vacancy probability in the sys- 
tem still equals p. The uniform case is recovered if all 
weights are equal to unity. 

Motivated by the density functional results, we focus 
on model distributions where w(12k) is larger than unity 
while all other weights are identical to each other and 
smaller than unity, 

 

w(2a) = w(2b) = w(4fIV) = w(4fVI) = 2 −w(12k) , (3) 
 

fulfilling the constraint (2). We also perform a few ex- 
ploratory calculations for models in which both w(12k) 
and w(2a) are increased while all others weights are iden- 
tical and decreased compared to unity. 

 
 

III. MONTE CARLO SIMULATIONS 

 
A. Algorithm 

 
We carry out large-scale Monte Carlo simulations of 

the classical Heisenberg model (1) to determine the mag- 
netic ordering temperature Tc, the saturation magneti- 
zation Ms, and other magnetic quantities. These simu- 
lations utilize both Wolff cluster updates [18] which are 
beneficial in reducing critical slowing down of the system 
near criticality and Metropolis single-spin updates [19] 
which help equilibrating small isolated clusters of spins 
which may form due to the site dilution. In our simula- 
tions, a full Monte Carlo sweep consists of a Wolff sweep 
followed by a Metropolis sweep. 

We simulate systems consisting of L3 double unit cells 
with L ranging from 6 to 48. As each double unit cell 
contains 24 Fe sites, our largest systems contain about 
2.6 million spins. All physical quantities of interest are 
averaged over 6400 to 25,600 independent disorder con- 
figurations for each size. Statistical errors are obtained 
from the variations of the results between the configura- 
tions. 

To find the number of Monte Carlo sweeps required for 
the system to equilibrate, we compare the results of runs 
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Nl 
i 

ν u ν 

m = 
L 

ϵ S . (5) 

i∈l 

They are defined as 

 
m = 

 1  L 
ϵ S 

 

 

 
(6) 

where the sum runs over all sites in the sublattice, and 
Nl is their number. 

To determine the ordering temperature Tc, we analyze 
the Binder cumulant [23] of the order parameter. It is 
defined as 

⟨|ψ|4⟩ 
g =  1 − 

3⟨|ψ|2⟩2 

 
 

 
dis 

 
. (7) 

 
 

FIG. 3. Equilibration of the energy per site E and the order 
parameter m for a system of 483 double unit cells, dilution 
p = 0.66, weight w(12k) = 1.25 and temperature T = 27 K . 
The comparison of hot and cold starts shows that the system 
equilibrates after roughly 500 Monte Carlo sweeps despite be- 
ing close to the critical point. 

 
 

with hot starts (for which the spins initially point in ran- 
dom directions) and with cold starts (for which all spins 
are initially aligned with the ferrimagnetic order). An 
example of such a test for a system close to its critical 
point is shown in Fig. 3. The energy and order pa- 
rameter reach their equilibrium values after roughly 500 
Monte Carlo sweeps. Similar numerical checks were per- 
formed for other parameter values. Based on these tests, 

Here ⟨...⟩ denotes the thermodynamic (Monte Carlo) av- 
erage and [...]dis denotes the average over disorder con- 
figurations. Because the Binder cumulant g is a dimen- 
sionless quantity, it fulfills the finite-size scaling form 

g(t, L, u) = g(tλ−1/ν, Lλ, uλδ) . (8) 

Here, λ is an arbitrary length scale factor, t = (T −Tc)/Tc 
is the reduced temperature, and ν is the correlation 
length critical exponent of the magnetic phase transi- 
tion. As we anticipate corrections to scaling to be im- 
portant in the presence of disorder, we have included 
the irrelevant variable u and the corresponding exponent 
δ > 0. By setting the scale factor λ = L−1, we obtain 

g(t, L, u) = F (tL1/ν, uL−δ) where F is a dimensionless 
scaling function. Expanding F in its second argument 
results in 

we have chosen to perform 1000 equilibration sweeps and 
2000 measurement sweeps. Note that performing com- 

g(t, L, u) = Φ(tL 
1 

) + uL−δΦ (tL 
1 

) . (9) 

paratively short Monte Carlo runs for a large number of 
disorder configurations reduces the total statistical error 
[20–22]. 

 
 

B. Data analysis 

 
The order parameter ψ of the ferrimagnetic transition 

in the hexaferrites is the “staggered” magnetization that 

If corrections to scaling are negligible (u = 0), the Binder 
cumulant curves for different system sizes all cross at the 
universal value Φ(0). If corrections to scaling cannot be 
neglected (u ̸= 0), this is not the case. Instead, the 
crossing point shifts with L and approaches t = 0 as L → 
∞. Expanding the scaling functions Φ and Φu gives the 
following expression for the crossing temperature T∗(L) 
between the Binder cumulant curves for sizes L and cL 
(where c is a constant): 

counts the spin-up sublattices positive and the spin-down 
sublattices negative, T∗(L) = Tc + bL−ω with ω = δ + 

1
 

ν 

 

(10) 

ψ = 
 1 L 

f ϵ S (4) where b ∼ u is a non-universal amplitude [9]. This system 
N  

i i i 

i 

where N is the total number of lattices sites. fi = 1 for 
sites in the 2a, 2b, and 12k sublattices whereas fi = −1 
for the 4fIV and 4fVI sublattices. In contrast, the physical 
magnetization is given by 

1 

N 
i  i 

i 

For easier comparison with experiment, we will use M = 
20µB m, which specifies the magnetization in Bohr mag- 
netons per formula unit. We also compute the sublat- 
tice magnetizations ml for each of the five Fe sublattices. 

size dependence can be used to extrapolate the numeri- 
cally found crossing temperatures to infinite system size, 
as is illustrated in Fig. 4. 

 
 

IV. RESULTS 

 
A. Critical Ga concentration from percolation 

theory 

 
Before we turn to the Monte Carlo simulations, we de- 

termine the critical Ga concentration, i.e., the Ga concen- 
tration at which the ordering temperature is suppressed 

l 
i 
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FIG. 4. Binder cumulant g vs. temperature T for several 
system sizes L, dilution p = 0.5 and weights w(12k) = 
1.25, w(2a) = w(2b) = w(4fIV) = w(4fVI) = 0.75. The statis- 
tical errors are smaller than the symbol size. Inset: Extrapo- 

lation of the crossing temperature T∗ to infinite system size, 
using the exponent value w = 1.5. 

 
 

 
to zero, by means of percolation theory. Specifically, 
we compute the site percolation threshold of the lattice 
spanned by the nonfrustrated interactions listed in Table 
I, taking into account that the vacancy probability varies 
from sublattice to sublattice. 

We employ a version of the fast percolation algorithm 
by Newman and Ziff [24] which allows us to study sys- 
tems of up to 3003 double unit cells (648 million Fe sites). 
For each system size, the percolation threshold is deter- 
mined from the onset of a spanning cluster, averaged over 
several hundred disorder configurations. The results are 
then extrapolated to infinite system size. 

We have applied this analysis to a sequence of sys- 
tems with varying vacancy weight w(12k) for the 12k 
sublattice. All other sublattices have identical weights 
given by Eq. (3). Figure 5 presents the resulting criti- 
cal Ga concentrations. For w(12k) = 1, this calculation 
reproduces the value xc = 8.846 found in Ref. [5]. As 
w(12k) is increased above unity, the critical Ga concen- 
tration first increases. It reaches a maximum of about 
9.27 for w(12k) ≈ 1.18 before decreasing again. For 
weights w(12k) ≳ 1.4, the critical Ga concentration is 
given by x = 12/w(12k) in very good approximation, in- 
dicating that the transition coincides with the complete 
depletion of the 12k sublattice. It is worth emphasiz- 
ing that xc deviates by less than 5% from its value for 
a uniform Ga distribution over a wide range of w(12k) 
between about 0.9 and 1.4. 

FIG. 5. Critical Ga concentration xc and the corresponding 

critical vacancy probability pc = xc/12 as functions of the 

weight w(12k). The statistical errors of the data points are 
much smaller than the symbol size. The solid line is a guide 
to the eye only. The dashed line represents the Ga concen- 
tration x = 12/w(12k) at which the 12k sublattice becomes 
completely depleted of Fe atoms. 

 
 

 

FIG. 6. Magnetic ordering temperature Tc as a function of 
the weight w(12k) at fixed Ga concentrations x = 0.6 and 0.7. 
The statistical errors are smaller than the symbol size. 

 
 

B. Magnetic phase boundary 
 

We now turn to the results of the Monte Carlo simula- 
tions. We start by analyzing how the magnetic ordering 
temperature Tc depends on the vacancy weights w at 
fixed overall vacancy concentration. Figure 6 presents 
Tc vs. w(12k) at fixed x = 0.6 and 0.7 for the same se- 
quence of systems as in Fig. 5, i.e. a sequence for which 
the weight w(12k) differs from all the other weights which 
are given by Eq. (3). The figure shows that the behavior 
of Tc is qualitatively similar to that of the critical Ga 
concentration xc discussed in Sec. IV A. As the weight 

x c
 

p
c 
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FIG. 7. Magnetic ordering temperature Tc vs. Ga concen- 
tration x for w(12k) = 1.25. All other weights take the value 

2 −w(12k). The statistical errors are smaller than the symbol 
size. The dashed line is a guide to the eye only. The experi- 
mental values stem from Refs. [5, 7]. 

 

 
w(12k) is increased from the uniform case, w(12k) = 1, 
the ordering temperature increases, reaches a maximum, 
and then decreases for larger w(12k). However, the rela- 
tive change of Tc is much stronger than that of xc. The 
maximum Tc is about 50% higher than the Tc value in the 
uniform case for x = 0.6 and twice as high for x = 0.7. 
Moreover, for weights w(12k) in the range from 1.2 to 
1.3, the ordering temperature roughly agrees with the 
experimental value obtained from the data in Refs. [5, 7] 
(see Fig. 1). 

Based on this observation, we have computed the or- 
dering temperature Tc(x) over the entire x-range between 
0 and xc for the weight w(12k) = 1.25. The result- 
ing phase boundary for w(12k) = 1.25 is shown in Fig. 
7 together with the corresponding experimental data. 
Clearly, the Monte Carlo results for w(12k) = 1.25 are in 
excellent agreement with experiment, in contrast to the 
Monte Carlo results for the uniform case, w(12k) = 1 
shown in Fig. 1. The corresponding Tc(x) curves for 
weights w(12k) = 1.2 and 1.3 deviate only slightly from 
the phase boundary for w(12k) = 1.25. 

For comparison, we have also analyzed a case in which 
the impurity weights in both the 12k sublattice and 
the 2a sublattice are increased, w(12k) = w(2a) = 1.2, 
whereas the other weights are reduced, w(2b) = 
w(4fIV) = w(4fVI) = 0.72. The resulting phase 
boundary is virtually indistinguishable from that for the 
case (3) with w(12k) = 1.2. 

 

 
C. Saturation magnetization 

 
In addition to the ordering temperature, we have also 

calculated the low-temperature limit of the magnetiza- 

FIG. 8. Low-temperature saturation magnetization M (in µB 

per formula unit) vs. Ga concentration x. for w(12k) = 1.25. 

All other weights take the value 2−w(12k). The experimental 
values stem from Refs. [6, 7]. 

 

 
tion M. As all interactions in our model Hamiltonian 
are nonfrustrated, this value can be directly compared to 
the low-temperature saturation magnetization Ms mea- 
sured in experiment. Figure 8 presents Ms vs. x for 
w(12k) = 1.2 and 1.25 [and all other weights given by 
Eq. (3)] together with the experimental values from Refs. 
[6, 7]. The figure demonstrates that the increased w(12k) 
weight leads to a reduction of the saturation magnetiza- 
tion compared to the case of uniform vacancy distribution 
and produces a good agreement between our model and 
the experimental data. 

The fact that an increased vacancy weight w(12k) leads 
to an increase of Tc and xc but a decrease of Ms appears 
somewhat counterintuitive at first glance. However, it 
can be readily explained by the ferrimagnetic order in 
the hexaferrites. An increased w(12k) weight reduces 
the number of Fe atoms in the majority (spin-up) sub- 
lattices whereas it increases the number of Fe atoms in 
the minority (spin-down) sublattices. As a result, the dif- 
ference between the numbers of spin-up and spin-down Fe 
ions is reduced, leading to a significant reduction of Ms. 
Note that this explanation does not rely on non-collinear 
magnetic order caused by the subleading (frustrating) in- 
teractions. We will return to this point in the concluding 
section. 

 

 
D. Sublattice magnetizations 

 
In addition to the ferrimagnetic order parameter ψ and 

the total magnetization m, we have also calculated how 
the sublattice magnetizations ml [defined in Eq. (6)] de- 
pend on the impurity concentration x, the weights w and 
the temperature T . Figure 9 shows the sublattice magne- 
tizations as functions of temperature at fixed x = 3.6 
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FIG. 9. Sublattice magnetizations ml vs. temperature T for 
x = 3.6 and w(12k) = 1.25. All other weights take the value 

2 − w(12k). 

 

 
and w(12k) = 1.25. [All other weights are equal and 
given by Eq. (3).] As expected, ml(12k) is significantly 
lower than all the other sublattice magnetizations be- 
cause the vacancy concentration in the 12k sublattice is 
higher than those of the other sublattices. In fact, the 
zero-temperature limit of ml agrees with the fraction of 
occupied sites in each sublattice. The differences of the 
sublattices magnetizations between the other sublattices 
(2a, 2b, 4fIV, 4fVI) are very small. They reflect the differ- 
ences in the environments of the Fe atoms in the different 
sublattices. 

 

 
E. Critical behavior at xc 

 
Finally, we turn to the critical behavior of the zero- 

temperature phase transition at xc. To this end, we an- 
alyze the the dependence of Tc on the distance x − xc 
from the zero temperature transition. For the case of a 
uniform vacancy distribution, Khairnar et al. [9] showed 
that Tc ∼ (xc −x)ϕ with ϕ = 1.12 in a narrow asymptotic 
region close to xc. This value of the crossover exponent ϕ 
agrees with the predictions of classical percolation theory 
[25, 26], confirming that transition at xc is a percolation 
transition. The pre-asymptotic behavior of Tc further 
away from xc still followed a power law in (xc − x), but 
with a nonuniversal crossover exponent. Its value was 
below unity but well above the experimentally observed 
2/3. 

Here we employ the same analysis for the case of a 
nonuniform vacancy distribution, specifically for our se- 
quence of systems with increased vacancy weight w(12k) 
and reduced weights (3) for all other sublattices. We find 
two different regimes, depending on w(12k). 

In the first regime, the zero-temperature transition oc- 
curs (as a function of increasing x) before the 12k sub- 

FIG. 10. Ordering temperature Tc vs. distance from the per- 
colation threshold pc − p for w(12k) = 1.25. All other weights 
take the value 2−w(12k). The dashed line is a power- law fit 

Tc ∼ (pc − p)ϕ of the data points close to xc. The 
dotted line is the corresponding fit of the preasymptotic be- 
havior. The statistical errors of the data are smaller than the 
symbol size. 

 

 
 
 
 

FIG. 11. Ordering temperature Tc vs. distance from the per- 
colation threshold pc − p for w(12k) = 1.5. All other weights 
take the value 2 − w(12k). 

 

 
lattice is completely depleted of Fe atoms. As shown in 
Fig. 5, this happens for w(12k) ⪅ 1.4. In this regime the 
behavior of Tc with x − xc is analogous to the case of 
uniform dilution: Asymptotically close to xc, the order- 
ing temperature follows Tc ∼ (xc − x)ϕ with the ϕ value 
from percolation theory. Further away from xc, the be- 
havior crosses over to a weaker dependence on x. This is 
illustrated in Fig. 10 for w(12k) = 1.25. 

In the second regime, the zero-temperature transition 
coincides with the complete depletion of the 12k sub- 
lattice of Fe atoms, as is the case for w(12k) ⪆ 1.4 
(at least in very good approximation). Figure 11 shows 
the dependence of Tc on xc − x for w(12k) = 1.5 with 
xc = 12/w(12k) = 8.  Clearly, the shape of the phase 
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boundary Tc(x) differs from the percolation scenario de- 
scribed above, suggesting a different universality class of 
the zero-temperature critical point. 

 
 

V. CONCLUSIONS 

 
In summary, motivated by the disagreement between 

experimental data and theoretical predictions, we have 
revisited the magnetic properties of diluted hexagonal 

ferrites, in particular PbFe12−xGaxO19. We have focused 
on the effects of an uneven distribution of the nonmag- 
netic Ga impurities over the five distinct Fe sublattices. 

Our ab-initio density-functional calculations have 
shown that the preferred sublattice for the Ga atoms 
is the 12k sublattice. To include this preference in the 
Monte-Carlo simulations, we have created model impu- 
rity distributions with increased vacancy probability in 
the 12k sublattice and correspondingly reduced proba- 
bilities in all other sublattices. These probabilities are 
parameterized by weights w such that the vacancy prob- 
ability in sublattice Y is given by w(Y ) p with p = x/12 

the overall vacancy probability. 
For appropriately chosen sublattice weights [w(12k) ≈ 

1.2 to 1.3 and the other w correspondingly reduced], our 
Monte Carlo results for the phase boundary Tc(x) and 
the low-temperature saturation magnetization Ms are in 
excellent agreement with the experimental data of Refs. 
[5–7]. This indicates that the uneven distribution of the 
Ga impurities is the main reason for the discrepancies be- 
tween the measurements and previous theoretical work 
in the literature. Notably, the uneven Ga distribution 
explains why the experimental saturation magnetization 
drops rapidly with increasing x whereas the critical tem- 
perature Tc decreases much more slowly. 

We have also studied the critical behavior of the zero- 
temperature phase transition at the critical Ga concen- 
tration xc. If this transition happens before any of the 
sublattices becomes completely depleted of Fe, the crit- 
ical behavior of Tc follows the predictions of percola- 
tion theory. For a more unequal Ga distribution (larger 
weight w(12k) ⪆ 1.4), the zero-temperature transition 
coincides with the emptying of the 12k sublattice. This 
leads to a different critical behavior of Tc(x). 

Our results suggest that the agreement between the 
experimental Tc data and the striking 2/3 power-law be- 
havior of the phase boundary Tc(x) put forward in Ref. 
[5] is actually “accidental.” It appears to be the result 
of the particular Ga weights rather than a fundamental 
principle. In fact, the data in Fig. 7 suggest that the 2/3 

power law may not accurately describe the data close to 
xc. Testing this predictions requires additional experi- 
ments at Ga concentrations close to xc. 

The Ga distributions employed in our simulations 
should be considered simple models rather than a quan- 
titatively accurate description of the real materials. For 
example, we do not include possible dependencies of the 
weights w on the concentration x, and we neglect any 
correlations between neighboring impurities. Extracting 
a more detailed description of the Ga distribution from 
our Monte Carlo simulations requires additional experi- 
mental input beyond Tc and Ms. In particular, fully dis- 
entangling the Ga concentrations in all five sublattices 
would require the measurement of sublattice magnetiza- 
tion curves (or equivalent local information) over the full 
x range. To the best of our knowledge, such experimental 
data are not yet available. 

Our present simulations do not include any of the sub- 
leading exchange interactions that frustrate the ferrimag- 
netic order. As a consequence, the magnetic order re- 
mains collinear over the entire x range. Simulations per- 
formed in Ref. [9] showed that subleading frustrating in- 
teractions and the resulting non-collinear order lead to a 
reduction in Tc. This implies that the frustrating inter- 
actions (by themselves) cannot explain the disagreement 
between the experiments and previous theoretical work. 
Even though our results demonstrate that non-collinear 
order is not the main reason for the rapid drop of the 
saturation magnetization Ms with x, the frustrating in- 
teractions and the resulting non-collinear order likely be- 
come important at larger x close to the zero-temperature 
transition. 

We hope that our study will encourage further exper- 
imental and theoretical work that helps resolving the 

open questions about the behavior of PbFe12−xGaxO19 
and other diluted hexaferrites. 
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Magnetic Properties of Diluted Hexaferrites - Reflection

Logan Sowadski

Throughout my project investigating the magnetic properties of diluted hexaferrites, I

have gained a strong understanding of the process of research in the field of computational

physics. Our research question arose from inconsistencies between theoretical predictions and

experimental observations on the magnetic behavior of the hexaferrite as it became increasingly

more diluted. We try to understand the cause for this discrepancy and project the material's

behavior as it becomes increasingly more diluted through computer simulations and data

analysis. With my advisor Dr. Vojta, I was guided through this research process and now have an

understanding of the process of researching a problem or question using computation resources.

This was my first experience doing research and it required me to expand my knowledge

of modern physics and modern methods of solving problems. I had to make strong use of

informational resources to learn more about these projects as a lot of the information is in

publisher archives. Through searching archives such as arXiv, SpringerLink, and the APS’s, I

was able to easily search for papers and information that would assist me in designing my code

and performing data analysis on the system.

Our experiment was done through computational simulations. The experimental set up

for these relies a lot on how we are wanting to model our system. I learned why you may want to

design systems in particular ways and why we chose specifically to look at our system through

what is known as a ‘Heisenberg’ model. Our experimental setup as well relies a lot on the

infrastructure we set up in our program in order to ensure we could get as accurate of a

calculation as possible while minimizing the run time of our simulation. This required me to

learn how to make use of parallel computing to spread out the work across individual nodes to



make the computations as efficient as possible.

During the entirety of the project, Dr. Vojta took a major role in being the one to

introduce me to new material and giving me a basic understanding to build on myself through

supplemental resources. Doing this throughout the entire duration of the project made the results

and the actual physics of the project very easy to digest. In a computational environment where

we are mostly working with numbers and code, being able to interpret the physical meaning of

results is difficult. The long process of getting everything ready for publication helped me

understand the information as well. We were very careful in the writing process to present all of

our data while making the material digestible for a reader. This required me to have a very deep

knowledge not only of my work but the papers that have led up to mine.
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