Biologically Plausible Deep Reinforcement Learning

Darrien McKenzie
Department of Computer Science
Missouri University of Science and Technology

Abstract

Biological neurons communicate primarily via a spiking process. Recurrently connected spiking
neural networks (RSNNs) more realistically model the brain, compared to their non-spiking
counterparts. It is of great interest to discover a biologically realistic learning rule to achieve
optimal levels of performance on machine learning tasks. Experimental data describe a
phenomenon known as spike-timing-dependent-plasticity (STDP), which integrates local firing
coincidences between neurons to learn. STDP is believed to underlie memory formation and
storage within the brain. When a reward signal modulates STDP, it enables forming associative
memories via operant conditioning. Neuromodulators like dopamine operate similarly in the
brain. We employ processes like synaptic scaling to support R-STDP in large, unstructured
RSNNs as a means to produce an agent that achieves adequate performance on reinforcement
learning tasks.

1 Motivation

Deep learning and the usage of neural networks have seen usage in many different fields
over the years due to their universal ability to generalize and approximate any arbitrary
function—even if said function is unknown to the experimenter. This ability makes neural
networks able to recognize patterns that involve massive amounts of data, which can then be
utilized to make accurate predictions and enhance general decision making. However, the
biological plausibility of artificial neural networks has seen criticism since their inception due to
their neglect of neuroscientific principles. Actual neurons communicate through spikes, which
are essentially discrete signals in time that occur on a timescale of milliseconds, which is in
contrast to artificial neural networks that communicate by transforming and sending numerical
values down to neighboring layers. The backpropagation algorithm in particular, despite it being
the primary reason neural networks are so widely used, is not at all biologically plausible, as it is
an operation that requires a certain structure and global knowledge of specific details such as the
calculated error of the output layer and the exact amount of contribution each neuron has for said
error (Bengio et. al, 2015). This error driven approach assumes that there are designated neurons
who are aware of what their exact target values should be, and that many other neurons know
this as well, which is itself an unreasonable assumption. The backpropagation also imposes a
structural limitation, as neurons must be organized in feedforward layers—which is in great
contrast to the brain’s reentrant structures (Izhikevich 2004, Edelman et. al, 2013). These are but
a few details that indicate that artificial neural networks do not correspond to neurobiological
behavior.

There can be great benefit in determining how the brain performs such computations if it
is not done by backpropagation. By respecting and abiding by behavior seen in actual neurons



we could, hypothetically, develop neural networks that approach the performance of the actual
brain or parts of it, for which we can then reap great benefits and approach the construction of
actual artificial intelligence. In this work, we will utilize a spiking neural network whose
computations allow for the emergence of forms of associative learning, which allows a neural
network to perform similarly to that of a reinforcement learning algorithm.

2 Background

Spiking neural networks are considered to be the third generation of artificial neural
networks (Maass 1997). Their main feature over artificial neural networks is that the neurons that
make up the network communicate through discrete spiking signals. Because these signals
happen over milliseconds, these neural networks inherently take the aspect of time into their
consideration. Neurons spike by accumulating membrane potential over time as it receives
electrical signals from other neurons (Vreeken 2003). Once a neuron is excited enough, it
releases the action potential, which is what we refer to as the spike. This action potential,
generally, will last for around 1 millisecond (Paugam-Moisy & Bohte 2012). The signal, like in
artificial neural networks, will then be transmitted along its axon, which is the part of the neural
anatomy that connects one neuron to another. The synapses of a neuron lie at the receiving end of
the axon, and are analogously equivalent to the weights in an artificial neural network in that the
synapses can strengthen or weaken signals received from other neurons. It is generally accepted
that synaptic plasticity, or the way in which synapses either strengthen or weaken signals
received from other neurons, is the core function that allows for the storage of memories, and
overall learning to occur (Abott et. al, 2000; Martin et. al, 2000).

Most observed forms of synaptic plasticity are in accordance with Hebbian Theory,
which claims that if one neuron tends to contribute to the firing of another neuron, then that
relationship is more likely to be enhanced (Hebb, 2005). This theory was further supported with
the observation of the phenomenon known as Spike-Timing-Dependent-Plasticity (STDP). STDP
is a biological process in which neurons adjust their synaptic connections based on precise spike
timing coincidences (Markram 1997; Bi & Poo 1998 ). STDP can be broken up into two rules: a
Hebbian rule and a Anti-Hebbian rule (Florian, 2007; Paugam-Moisy & Bohte 2012). If a
presynaptic (input) neuron fires right before a postsynaptic (output) neuron, then the synapse
between these neurons will be strengthened. This strengthening effect can be considered the
Hebbian part of STDP, since a neuron takes part in causing the firing of another neuron and the
connection is enhanced as a result. If a presynaptic neuron fires right after a postsynaptic neuron,
however, then the synaptic connection between the neurons decreases in strength. This
dampening effect is considered to be the Anti-Hebbian part of STDP (Florian, 2007,
Paugam-Moisy & Bohte 2012). Intuitively, if a presynaptic neuron fires right before a
postsynaptic neuron (the Hebbian rule), then it is highly likely that the presynaptic neuron
contributed to the firing of the postsynaptic neuron, and so this particular connection will
strengthen and interaction is thus more likely to happen in the future. Likewise, it should be the
case that if a presynaptic neuron fires right after a postsynaptic neuron does (the Anti-Hebbian
rule), then it is unlikely that the presynaptic neuron has contributed to the firing of the
postsynaptic neuron. As a result, this connection will be weakened to make it even less likely
that the presynaptic neuron will cause the postsynaptic neuron to fire in the future. In both cases,
an observed temporal coincidence will cause the same coincidence to be more likely to occur in
the future—the synaptic plasticity of the neurons is dependent on their timing—hence the naming



of STDP. When these coincidences occur, there must be some leftover trace of that interaction,
which is traditionally called the eligibility trace, that indicates that the synapse between the
presynaptic and the postsynaptic neuron should be either strengthened or weakened depending
on their particular temporal relationship. If both neurons fire at the exact same time, then it
implies that some other neuron(s) contributed to their firing, and so no synapses will be affected
as there is no temporal coincidence. It should also be noted that neurons that have no relationship
at all, in that their spikes are too distant in time to be related, will undergo no plasticity.

STDP

AW, Hebbian

At

Anti-Hebbian

Figure 1: A graph representing STDP between an arbitrary presynaptic and postsynaptic
neuron. A¢ represents the difference between the firing of the postsynaptic neuron and the
presynaptic neuron. 4w represents the change in synaptic weight strength between the
presynaptic and postsynaptic neuron.

Reward modulated spike timing dependent plasticity (R-STDP) is an additional form of
STDP in which the temporal coincidences will only be exaggerated if those coincidences led to
some reward, which is usually signaled in the brain by the dopamine neuromodulator (Florian
2005; Izhikevich 2007). By itself, STDP can be considered an unsupervised rule in that the
network of spiking neurons will change their weights based purely on the stimuli (data) given, as
opposed to a supervised or reinforcement learning rule, which gives the network feedback on the
network’s overall performance in regards to some desired task (Paugam-Moisy & Bohte, 2012).
This feedback can then be used by the network in some way to further improve its ability to
solve said task. In the case of R-STDP, some form of reward can be given that serves as a gating
signal that must be present if synaptic plasticity is to occur. Generally R-STDP is applied by
multiplying a reward by the weight changes calculated by STDP (Florian, 2005; Florian, 2007;
Izhikevich, 2007). The weight changes in this case are referred to as the eligibility trace (Florian
2007, Sutton & Barto 2018). Intuitively, STDP will calculate which synapses are due for
strengthening and dampening, and by how much, which is stored as a trace of weight changes. It
is these synapses (weights) that are eligible to change. But in the case of STDP, the eligibility



trace is multiplied by some sort of numerical reward, meaning that the absence of reward will
result in the canceling out of the eligibility trace. Alternatively, the presence of reward will not
change the network if STDP determines that no synapses are eligible for change. While this is
almost certainly a simplification of the brain’s rewarding mechanisms, it does allow the network
to distinguish between which temporal coincidences matter as a means of increasing the amount
of rewards it receives, and which do not. If actions are driven by interactions between neurons,
and those actions lead to reward, then by reinforcing the coincidences that occurred when reward
was received, the neurons are more likely to cause the same pattern that led to the reward to
happen again in some capacity. For simplicity, we assume this reward factor is global and
washed over the entire network or some region of the brain responsible for decision making. This
should lead to some sort of global optimization, on average, within the network.

It is our main interest to use R-STDP, which requires the use of spiking neural networks,
to construct an agent that solves reinforcement learning tasks. With states being encoded as
stimuli that are able to then cause neurons that encode actions to fire, we can have a spiking
neural network that will exaggerate the spike coincidences that lead to reward. Over time, the
agent will improve over time and choose the optimal actions in each state just like that of a
typical reinforcement learning algorithm. To simulate the spiking neural network, we use our
own Spikey python library, which is a malleable spiking neural network simulator that provides
basic spiking neuron operations and extends naturally to reinforcement learning tasks. We refer
to the approach of taking the neurobiological learning rule R-STDP, and extending it to be able
to solve reinforcement learning tasks as Reinforcement
Learning-Spiking-Timing-Dependent-Plasticity (RL-STDP).

3 The RL-STDP Learning Rule

The main purpose of RL-STDP is ultimately to produce an agent that adjusts its behavior
to achieve the optimal amount of reward within some arbitrary environment. To be more
specific, the agent abides by some policy that maps the states of the environment to probabilities
of taking actions within said environment. The evaluation of the policy is dependent on some
reward signal that is either received from the environment (external reward) or generated by the
agent itself (intrinsic reward). At this time, RL-STDP only utilizes external rewards provided by
the reinforcement learning environment’s reward scheme. In this iteration of RL-STDP, we
primarily utilize a simple feedforward architecture, with one input layer and one output layer,
though hypothetically the structure could be extended to include hidden layers and or recurrent
connections (see Discussion). Neurons in the input layer correspond to specific states in the
environment, which are activated when the agent arrives in said state. Neurons in the output
layer correspond to actions that can be taken in the environment, whose activations are
dependent on the synaptic weights that connect the presynaptic state neurons to the postsynaptic
action neurons.

The RL-STDP algorithm can be best described as continuously progressing through three
different timescales or stages: the network stage, the game stage, and the episodic stage (see
Figure 3). We will thus describe what happens upon each step in each of these stages, where a
step generally refers to a single increment of time in a particular stage.



Fast Parameters - Network Step

- Slow Parameters - Game Step
Step Episode
reward Reward

Eligibility
Matrix Decay

STDP (Trace
accumulation)

Potentials Fires

l e Eligibility
I Matrix

Episode termination

Weights

\

Average Episodic
Reward (Baseline)

Normalization

Learning
Rate

Delta
Figure 3: A high level overview of the RL-STDP algorithm. Each operation occurs in
one of three phases: the network phase, game phase, and episode phase. The operations of one
phase lead into another.

Network Timescale (Perception):

During the network stage, the input neurons that correspond to the agent’s current state
fire according to some parameterized firing rate. In our models, we assume that a spiking neuron
can only fire once per millisecond. This millisecond serves as a single network step, or tick. The
spikes from the input neurons are connected to the action neurons, and will build up charge and
cause them to spike once their potential surpasses the firing threshold (see Figure 3). The state
neurons will continue firing for a certain amount of milliseconds that we refer to as the
processing time. A processing time of 20 ms means that the state neurons will fire over the
course of 20 network steps, and that the conclusion of the network timescale phase will conclude
at the end of those 20 steps. Informally, this process could be thought of perceiving the state
stimuli--with the spikes corresponding to the agent “thinking” about the state, before committing
an action. The network is subject to spike-timing-dependent-plasticity, which stores a potential
weight change traditionally referred to as the eligibility trace that depends on the timing of
presynaptic state and postsynaptic output neurons, or STDP.




Figure 3: The general structure of the network in the case of a gridword. Each tile represents a

state, which has a corresponding neuron that will spike upon transitioning into that state. All of

the state neurons are connected to a group of action neurons. In this case, the agent can move in
all cardinal directions. State neurons will only fire when their respective state is visited.

Game Timescale (Action):

Once the network phase has completed, we use a readout function on the network to
dictate what action the agent has decided to take as a result of perceiving the state over the
processing time. Each neuron in the output layer corresponds to an action within the
environment's action space. Neurons that correspond to the same action can be thought of
belonging to the same action group. The readout mechanism used simply takes the action that
corresponds to the action group that exhibited the most activity—specifically the amount spikes
over the processing time. If two action groups have the same amount of activity, then one of
those actions is chosen randomly. Once the action is taken, the reward that is given by the
environment’s step function is added to the total reward for that episode.

Alongside this action is optional the activation of the winner-take-all (WTA) mechanism,
which is some arbitrary procedure that aims to increase the likelihood that the eligibility trace
accumulated over the game step corresponds to the actual action taken. Since the reward is
global and washed over the entire network, other neurons from other action groups will also be
affected by rewards and punishments in the future. Thus, it is possible that an action can be taken
and rewarded, but the underlying spike timings are such that another action group accumulated
more of an eligibility for that game step. This will result in the wrong action group getting more



credit than the action group that corresponds to the action that was actually taken. This is an
instance of the structural credit assignment problem, in which a decision is formed from the
interaction of multiple parts, and the credit for said decision must ultimately be distributed to the
parts that contributed most to said decision.

While reward modulated spike-timing-dependent plasticity is capable of structural credit
assignment, it has yet to demonstrate the same capability as something like backpropagation,
which is comparatively a much more fine-tuned computation. Winner-take-all mechanisms are
usually introduced as a means to accelerate learning by making the structural credit assignment
problem easier. A somewhat soft but common approach is to utilize the idea of lateral inhibition,
in which neurons that spike subsequently inhibit the firing of their neighbors. Specifically, a
neuron in one action group could be inhibitory and also be connected to all output neurons that
are not within its action group. An extremely forceful approach towards the structural credit
assignment is to simply erase the eligibility traces that correspond to the other action groups that
were not taken. This essentially removes the structural credit assignment problem from the
picture entirely, as the action neurons that truly contributed to the action taken will be the only
neurons that are marked as eligible upon receiving a reward or punishment. It should be noted
that this particular form of winner-take-all is only applicable to a simple feedforward network
that consists of only two layers. While we choose to utilize this approach so that we may focus
on the temporal credit assignment problem, it is highly desirable that we eventually develop an
approach or network configuration that emergently and effectively resolves the total credit
assignment problem. Under this winner-take-all, one neuron per state and one neuron per action
is sufficient to see performance on reinforcement learning tasks. We note that it is somewhat
similar to something like Q-learning, in that Q-learning will take the action that is most
associated with reward, and it does not need to concern itself with the structural credit
assignment problem due to the nature of the Q-table.

Regardless of whether a winner-take-all mechanism modifies the eligibility trace for a
single game step, or no winner-take-all mechanism is implemented at all, the eligibility trace that
is accumulated by spike-timing-dependent-plasticity will be added to the eligibility matrix that is
the same shape as the weight matrix. Upon taking any action, this eligibility matrix is decayed by
some parameter determined by the experimenter. The trace decay is the primary feature that
allows for temporal credit assignment, as actions that happened earlier in time will receive less
credit for a reward than those actions that happened more recently. The eligibility matrix, which
stores the timing coincidences between the state and action neurons, essentially represents the
history of actions taken over an entire episode. Without any trace decay, all actions would be
rewarded equally regardless of when they occurred in time. And with complete trace decay, the
network would only be able to remember the last action taken. Once the change has been added
to the eligibility matrix and the action readout from the network is taken by the agent, the game
step concludes and another step begins. Note that every game step consists of multiple network
steps which operate on the timescale of milliseconds.

Episode Timescale (R-STDP):

Once the episode has been terminated, the reward used in the final R-STDP product
needs to be calculated. The incoming episode reward is first normalized, which requires the
network to keep track of the maximum reward and the minimum reward received. The network
keeps track of a list of rewards that represent the agent’s memory of past episodic returns. This
history will be used to both calculate the agent’s average reward, and determine the maximum



and minimum reward used for the normalization. The optimal length of the history, or the
amount of past episodes to consider, tends to vary between tasks and is thus a parameter that
needs to be tuned. The length of the history is akin to the reward discount parameter used in
other standard reinforcement learning algorithms like Q-learning and Sarsa. Once an episode
terminates, the network reward is calculated by taking the normalized difference between the
incoming episode reward, and the average episode reward. With the network reward calculated,
the weight delta matrix will be formed by taking the product of the network reward, eligibility
matrix, and a parameterized learning rate. This delta matrix will then be added to the weight
matrix. This concludes the episode time step. Note that every episode time step consists of
multiple game steps, which themselves consist of multiple network steps. The interactions that
occur on a scale of milliseconds leads to the formation of behavior on a much longer time scale.

A special case occurs if the average has not been assigned—meaning that this is the
agent’s first episode. In this case the reward average will be initialized to the first episode’s
returned reward, and the episode time step will end with no modification of the weight matrix.
No learning will occur on the first episode as the return of the first episode, in which the agent
acts randomly, serves as a comparative basis for future returns.

Upon completion of an episode, the modified synaptic weights will then be used in the
next episode, starting again in the network timescale. The transitions between the network, game,
and episode timescales repeat for a given amount of episodes. The overall training period ends
when the last episode has concluded.

4 Applications

While the general idea of R-STDP could certainly be applied in other tasks that benefit
from classical or instrumental conditioning, it is a primary concern to use the learning rule to
solve reinforcement learning tasks. The tasks focused on in this work are referred to as the
Cartpole, Mountain Car, and Acrobot tasks. These environments represent some of the most
popular problems in the reinforcement learning literature, and are thus perceived by many as a
benchmark used to determine the ability of a reinforcement learning algorithm. Though there
exist many variations of these types of tasks, the OpenAl implementation represents the most
popular versions of the benchmark. All of these environments have continuous state spaces,
made up of multiple dimensions or attributes that the agent must observe before taking an action.
The current implementation of RL-STDP relies on what is referred to as “place cells’. Place cells
map discrete states to a group of input neurons. When the agent transitions into a state, only the
corresponding place cells will fire. Since these tasks have continuous state spaces, each state
dimension must be partitioned and enumerated in such a way that each combination of partitions
corresponds to a discrete state, which is a standard approach for dealing with continuous state
spaces. This approach is not practical for complex tasks with large dimensional state spaces, but
this will suffice for the target tasks.

Some of these environments (Cartpole, MountainCar) have formal solve conditions,
which indicate that the agent has solved the environment if it meets a certain average reward
over a certain amount of episodes. Other environments lack these solve conditions, and so we
must impose our own benchmarks based on how typical reinforcement learning algorithms
perform in comparison to ours.



4.1 Cartpole Task

Figure 4: A render of OpenAl’s CartPole-v1 environment

Definition: “A pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track. The system is controlled by applying a force of +1 (right) or -1 (left) to the
cart. The pendulum starts upright, and the goal is to prevent it from falling over. A reward of +1
is provided for every timestep that the pole remains upright. The episode ends when the pole is
more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center.”
(Brockman et. al 2016)

Environment Spaces:
Action Space: [-1 (left), 1 (right)]
Observation Space: [Cart Position, Cart Velocity, Pole Angle, Pole Angular Velocity]

Solve condition:
“Considered solved when the average return is greater than or equal to 195.0 over 100
consecutive trials.”



Results:

Experiment 1:

CartPole-v1 Performance

Average reward (over last 100 episodes)

200 ~
175 1
150 4
125 4
100 4

75 A

25 A

[=38

T T T T
800 1000 1200 1400
Steps

T T
200 600

200 ~

150 4

100 4

[=38

Experiment 2:

200 4

150 4

100 +

200 4

150 4

100 4

T T T T T T
200 600 800 1000 1200 1400

Highest Target Average Reward (over 100 episodes): 199.4

CartPole-vl Performance

Average reward (over last 100 episodes)

T T T T
0 200 400 1000 1200 1400

Steps

T T T T T
600 800 1000 1200 1400

Highest Target Average Reward (over 100 episodes): 197.2



Experiment 3:

CartPole-v1 Performance

Average reward (over last 100 episodes)
200 A

1751
1501
1251
1001
75 4
50 4
254

0 200 400 600 800 1000 1200 1400
Steps

200

150 4

100 A

50 4

T T T T T T T T
o 200 400 600 800 1000 1200 1400

Highest Target Average Reward (over 100 episodes): 194.17

Observations:

It can be observed that the performance across multiple runs is able to meet the solve
condition for the task. Compared to the other environments, this performance is fairly consistent.
However, it should be noted that we do not consider all state attributes when we are reading in
the state. We found that performance is much better when we only consider the angle of the pole,
and the velocity of the pole. This is likely because there are less states to keep track of, and thus
it is easier for the agent to recognize that it needs to focus on keeping the pole upright. Despite it
going out of bounds occasionally, the agent still recognizes that it receives more reward when it
keeps its pole’s velocity to a minimum, which inherently prevents the pole from tipping over and
forcing the cart to increase its speed to keep it upright. This gives it the appearance that it is
deliberately avoiding the bounds, but in reality the agent has no perception of said boundaries.



4.2 MountainCar Task

‘ | ‘

Figure 5: A render of the MountainCar-v0 environment

Description: “A car is on a one-dimensional track, positioned between two ‘mountains’. The
goal is to drive up the mountain on the right; however, the car's engine is not strong enough to
scale the mountain in a single pass. Therefore, the only way to succeed is to drive back and forth
to build up momentum.” (Brockman et. al 2016)

Environment Spaces:
Action Space: [left acceleration, no acceleration, right acceleration]
Observation Space: [Car Position, Car Velocity]

Solve condition:
“MountainCar-v0 defines ‘solving’ as getting an average reward of -110.0 over 100 consecutive
trials.



Results:
Experiment 1:

MountainCar-v0 Performance

Average reward (over last 100 episodes)

0-
—1000 + F
—2000 1
—3000 4
—4000 1 J
—5000 1
0 2000 4000 6000 8000 10000
Steps
5000 -
4000 -
3000 A
2000 A
1000 +
0_ T T * - T - T - n - T - T
0 2000 4000 6000 8000 10000
Highest Target Average Reward (over 100 episodes): -119.79
Highest Episode Score: -89
Experiment 2:
MountainCar-v0 Performance
Average reward (over last 100 episodes)
01 ~
~1000 -
~2000
~3000
—4000
~5000 |
0 2000 4000 gpepg 6000 8000 10000
5000 1
4000 -
3000 A
2000 A
1000
0 L T T T T T T
0 2000 4000 6000 8000 10000




Highest Target Average Reward (over 100 episodes): -115.69
Highest Episode Score: -90

Experiment 3:

MountainCar-v0 Performance

Average reward (over last 100 episodes)

—1000 4

—2000

—3000 4

—4000

—5000

T T T T T
1000 2000 3000 4000 5000
Steps

o4

5000

4000

3000 4

2000

1000 -

T T T T T
1000 2000 3000 4000 5000

o

Highest Target Average Reward (over 100 episodes): -121.28
Highest Episode Score: -87

Observations:

Though not all runs are shown, the patterns witnessed on each run are fairly similar.
Given enough time to explore, the agent is able to resolve the temporal credit assignment
problem and identify which steps led to the reward--resulting in a drastic increase in average
reward over time. We consider all state attributes when reading in the state. This problem is slow
to improve at first, because it will spend a lot of time moving randomly until it stumbles upon the
goal. Even when it does discover the goal for the first time, it may take a few more wins in order
to recognize which actions led to that reward. It will then enter a phase in which it consistently
reaches the goal in about less than 130 timesteps. Sometimes, if it gets unlucky and takes too
long to get back up to the goal, a string of punishments will occur and the agent will forget and
take a few episodes to stumble back into the ideal pattern. Unfortunately, we were not able to
meet the solve condition for this task.



4.3 Acrobot Task

A render of OpenAl's Acrobot-v1 environment

Description: “The acrobot system includes two joints and two links, where the joint between the
two links is actuated. Initially, the links are hanging downwards, and the goal is to swing the end
of the lower link up to a given height” (Brockman 2016). A reward of -1 is given for every step
until the lower link surpasses this height.”

Environment Spaces:
Action Space: [-1, 0 (no torque), +1] (these refer to the torque applied between the two
links)
Observation Space: [cos(thetal), sin(thetal), cos(theta2), sin(theta2), angular velocity of
first joint, angular velocity of second joint]

(thetal and theta2 relate to the rotational positions of the first and second link,
respectively)

Solve condition:
There is no formal solve condition for this environment.



Results:
Experiment 1:

Acrobot-v1 Performance

Average reward (over last 100 episodes)

—200 1

—400 -

—600 4

—800 4

—1000 4

T
0 200 400 600 800 1000
Steps

1000 A

800 A

600

200 A

T
0 200 400 600 800 1000

Highest Target Average Reward (over 100 episodes): -170.3
Highest Episode Score: -85

Experiment 2:
Acrobot-v1 Performance
Average reward (over last 100 episodes)

—200 1

—400 -

—600 4

—800 +

—1000 4

T T T
0 200 400 Steps 600 800 1000

1000 A

800

600

400 ~

200

T
0 200 400 600 800 1000



Highest Target Average Reward (over 100 episodes): -178.97
Highest Episode Score: -94

Experiment 3:

Acrobot-v1 Performance

Average reward (over last 100 episodes)

—200

—400 -

—600

—800 4

—1000

0 200 400 600 800 1000
Steps

1000

800+

600

400 1

2004

T T T T T T
0 200 400 600 800 1000

Highest Target Average Reward (over 100 episodes): -234.58
Highest Episode Score: -149

Observations:

This task is similar to the mountain car task in that it requires the agent to maneuver between
states and eventually discover the goal. While the learning is seemingly more gradual, it tends to
peak at a suboptimal level of performance. Even though there is no formal solve condition, it is
preferable that our agent is able to at the very least solve the task in around 100 time steps. This
task also features the most variability, as the quality of experimental runs vary widely. We
consider this task to be the most difficult of the three, as the task requires precise movements like
in the cartpole task to move the links upward, and the agent must also stumble around and
discover the goal in the first place, similar to the mountain car task.

5 Discussion

It is our main intention to have a spiking neural network perform optimally in tasks
similar to these without having to resort to forcefully solving the structural credit assignment
problem by utilizing a winner-take-all mechanism. While this was attempted during the creation
of this algorithm, it soon became a developmental bottleneck. We have seen some success in



simpler reinforcement learning tasks, where the temporal credit assignment problem is taken out
of the picture, and the problem is reduced to taking actions in a few states. We have also shown,
primarily through the results in the aforementioned tasks, that the decaying eligibility traces are
able to mostly solve the temporal credit assignment problem. It is perhaps not surprising to find
trying to solve both credit problems at once, which is the total credit assignment problem, is far
more difficult than solving just one or the other. We still believe, however, that reward modulated
spike-timing-dependent-plasticity is still a main component of the solution that will solve this
problem. More experimentation will need to be done to demonstrate this claim.

We also intend to have a rule that strays away from structure dependence. Hypothetically,
we do not need feedforward networks to solve reinforcement learning problems.
Spike-timing-dependent plasticity only considers the temporal coincidences of neurons, and so
any structure in which neurons are connected can be subject to STDP and R-STDP. However, a
feedforward structure is the most simple and the most familiar to us given our previous
experiences dealing with artificial neural networks. Homeostatic processes that occur alongside
STDP and R-STDP, like synaptic scaling, cannot be applied to a feedforward network. At the
very least they rely on hidden layers. We have considered that trying to use a biologically
unrealistic structure with a biologically realistic rule is not an approach that should be further
explored. Perhaps more of a focus should be placed on recurrent connections or other arbitrary
network structures. Nonetheless, more experimentation will be needed to argue for or against
such claims.

We hope to use this implementation of the RL-STDP algorithm as a basis to improve on
and eventually give rise to a rule that can solve the total credit assignment problem in a
biologically realistic way—such that the behavior is emergent rather than being forced by the
experimenter.

6 Acknowledgements

I would like to thank Dr. Taylor for providing me with many resources and the opportunity to
participate in a project that has greatly developed my skills and intuition as a researcher.



References

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature neuroscience, 3(11),
1178-1183.

Bengio, Y., Lee, D. H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep
learning. arXiv preprint arXiv:1502.04156.

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18(24), 10464-10472.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Edelman, G. M., & Gally, J. A. (2013). Reentry: a key mechanism for integration of brain function.
Frontiers in integrative neuroscience, 63.

Florian, R. V. (2005, September). A reinforcement learning algorithm for spiking neural networks. In
Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC'05) (pp. 8-pp). IEEE.

Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic
plasticity. Neural computation, 19(6), 1468-1502.

Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups.
Cerebral cortex, 14(8), 933-944.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine
signaling. Cerebral cortex, 17(10), 2443-2452.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural
networks, 10(9), 1659-1671.

Markram, H., Libke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213-215.

Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic plasticity and memory: an evaluation of
the hypothesis. Annual review of neuroscience, 23(1), 649-711.

Paugam-Moisy, H., & Bohte, S. M. (2012). Computing with spiking neuron networks. Handbook of natural
computing, 1, 1-47.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Biologically Plausible Deep Reinforcement Learning

Darrien McKenzie
Department of Computer Science
Missouri University of Science and Technology

Reflection

1.) Describe your foundational understanding of how research is conducted in your
discipline

Though we are working in a niche intersection between computational neuroscience and
reinforcement learning, our experiments bear more resemblance to how research is conducted in
reinforcement learning as opposed to computational neuroscience. Before OpenAl Gym, the
library used to simulate environments (or “games”) that an agent can solve, experimenters had to
construct their own environments with their own dynamics and reward schemes in order to
demonstrate the performance of their method. Not only is constructing environments like
Acrobot from scratch a non-trivial task, but it would differ from someone else’s simulation
unless the source code for the environment was shared—which was rarely done. OpenAl gyms
provide universal benchmarks that any reinforcement learning practitioner should be familiar
with if they wish to convey the efficiency of their method. Being able to perform on these tasks
was therefore the end goal, and from there, we constructed less complex tasks like gridworlds as
a means to build up to these milestones. Were we to eventually solve the ‘classic’ tasks in
OpenAl gym—we could chase the more complex environments within the library, and every
consecutively difficult environment solved represents another accomplishment that is easily
demonstrated and understood by anyone who is familiar with the reinforcement learning
discipline.

2.) How have you expanded your understanding of the informational resources available and
how to best use these resources?

In the beginning, I was given many resources that could have proved useful, though at
first this led me to missing the forest for the trees. I attempted to read and understand every paper
thoroughly, which proved to be an arduous task given that the research papers were written at a
very high level and as such were not the most digestible materials—nor were many of those
complex details necessary for me to pursue our goal overall. It took talking with one of my
colleagues, Cole Dieckhaus, who had been in this situation before, to simplify things and get me
to see the big picture. I now no longer agonize over every detail-only digging in when it is of
relevance to the development of our research. I imagine that this skill will strengthen over time
with practice, and I do not claim that it is perfect.

3.) Describe the knowledge you have gained regarding the fundamentals of experimental
design



It is important to start small and progress iteratively when designing experiments. In the
case of reinforcement learning, there are many environments that we are interested in performing
in, but it would not have been practical to pursue those environments to start with. I believe there
was great value in starting with the simple Gridworld environments that could be solved with a
few actions and did not require some method of simplifying the observations. If this simple
environment could not be solved—it usually indicated that the issue was with the network itself,
rather than the complexity of the environment. Problems were better able to be isolated and
resolved using this iterative approach, and I couldn’t imagine the headache I would acquire
trying to manage many complexities at once.

4.) Describe how you have learned to interpret the results of your research project

In this work, I did not acquire the ideal result of a completely randomly interconnected
neural network of many different neurons being able to organize itself using neurobiological
rules to solve complex problems. We were able to achieve some performance using a specific
structure of the network, and I do believe that in doing so I was able to resolve some of the
problems that will eventually contribute to us being able to develop a rule that does not have
such restrictive structures in the future. We can build upon these results by taking away
restrictive elements, resolving performance problems that arise from removing said elements,
and then aim to remove another element one-by-one until we arrive at a form of network that has
the neurobiologically inspired self-organizing properties that we desire. Our results are but one
step towards this goal.



	McKenzieD-Paper
	McKenzieD-Reflection

