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Abstract

In this paper, we will be investigating how to compute the integral distance defined in [1], and we
will analyze the results from this computation. We develop a way to compute the integral distance by
using Monte-Carlo Integration, and we analyze the time complexity and the error that results from this
method of computation. We also investigate when this distance function is a metric, how this metric
compares to some other common metrics, and what the efficacy of the integral distance is for computer
vision problems.

1 Introduction

The integral distance in [1] defines a metric that computes distances between sets when p ≥ 1. That is, if
X is a set, then the metric computes a distance between two elements of 2X . In this paper, we give detail
about how we approximate this metric by using Monte-Carlo Integration.

In [1], the integral distance is defined on the compactum X, with A,B ⊂ X being closed, and the function
dA(x) = inf{d(x, y)|y ∈ A}. The paper then defines the integral metric as

Dp(A,B) =

(∫
X

|dA(x)− dB(x)|pdx
) 1

p

.

Defined in [[2], p. 11], Monte-Carlo Integration is a numerical integration algorithm that relies on statistical
sampling of values of the integrand to estimate the value of the integral. Due to Monte-Carlo Integration’s
statistical basis, the algorithm can be used to find a confidence interval for the integral for a given confidence
level. The benefit of this numerical analysis technique is that the error is only dependent on the number
of sample points, and does not change as the dimension changes, as some other integration algorithms do.
Specifically, if we let s represent the number of sampling points of the integrand, then the error of the
Monte-Carlo algorithm scales with 1√

s
[[3], p. 12]. Since we are investigating the integral metric on sets in

the power set of Rn, this is useful, as the error of the integral approximation will not be dependent on n.
The algorithm is listed in section 6.5

To analyze the Monte-Carlo algorithm, we created a program that can generate thousands of sets of real
numbers, seen in section 6.5 to see what distance the integral distance gives when plugging in those sets. The
data that we generate in this program comes from a pseudorandom number generator provided by Python,
as a computer cannot generate truly random data. We will still say that this data is random, as is common
in the applied literature. We can use this program to examine what values the integral distance gives for
different types of sets. This can help us understand how the metric behaves, and whether it can be reliably
used for other purposes. These other purposes include using it for image analysis, among other things. Some
classification algorithms rely on a metric to classify data, and we want to see how this metric compares with
those other classification algorithms.

We utilize the results from the numerical approximation to compare the integral distance to other met-
rics, including the Euclidean Metric and the Hausdorff metric. Since the integral distance is provably a
metric on hyperspaces, to compare it to the Euclidean metric, we only look at the distance between single-
ton sets. The Hausdorff metric is also a metric on hyperspaces, so the metrics can be compared for all sets.
We use the numerical approximation of the integral metric to determine how the integral metric relates to
other metrics.

In [1], the integral distance is only proved to be a metric when p ≥ 1. The authors prove that for all
p > 0, the integral distance is a semimetric, but they only prove that it satisfies the triangle inequality when
p ≥ 1. In this paper, we investigate whether the distance function satisfies the triangle inequality when
0 < p < 1. Specifically, we prove that the integral distance under the usual distance function in R does
satisfy the triangle inequality when 0 < p < 1, and is therefore a metric.

2



When the integral distance is a metric, it can be utilized in various computer vision algorithms that use
distances to distinguish objects. We investigate its efficacy in performing this function by analyzing how
well it can read the data in the MNIST data set. The MNIST data set contains 70,000 handwritten entries
of the numbers zero through nine, each transformed into a twenty-eight by twenty-eight pixel image. The
goal is to try to correctly classify as many numbers as possible. We attempt this goal by using the k-medoids
PAM algorithm, as detailed in [4].

2 Time Complexity and Error Analysis

We created a program to generate a large amount of randomly generated data that could be substituted into
the algorithm for approximating the integral metric. We used these values to analyze the time complexity of
the program and how the error changes based on the changing the parameters of the program. Plots for these
values are included in the Appendix in 6.1 and 6.2. Throughout this investigation, we found that the time
complexity of the approximation algorithm increases linearly when the cardinalities of the sets A and B sub-
stituted into the integral metric increases, when the number of points that are sampled increases, and when
the dimension increases. The edge length of the set X does not affect the time complexity, where the edge
length of X = [x0, x1]n is x1−x0. If n is the number of sampled points, then as n increases, the computation
error decreases by 1√

n
, which is consistent with how the Monte-Carlo Integration algorithm should work.

The error is constant when varying the cardinalities of the sets A and B. However, the error increases at a
rate faster than linear when the length of the set X increases, and the error seems to increase at least expo-
nentially as the dimension increases. These results were determined by varying only one parameter at a time.

In the introduction, we stated that the error for approximating integrals using Monte-Carlo Integration
is dependent only on the number of points being sampled for the integrand. The above result states that
the error also increases when dimension increases and when the length of the set X increases. In the case
of dimension increasing, this happens due to the integrand itself, not due to the integration method. The
integrand is dependent on the Euclidean metric, which will have another term to compute whenever the
dimension increases by one. This change in the function when the dimension changes affects the error when
sampling points of the function to approximate the integral. The error is not the result of the Monte-Carlo
algorithm. With an increase in the length of the set X, there are additional values that can be substituted
into the integrand, changing the codomain of the integral. This means that there are more points that can
be sampled to approximate this integral. Since the number of sample points was kept constant, this means
that increasing the edge length of X adds more values that were not being considered in the approximation
of the integral, increasing the error.

3 Numerical Approximation Results

Generating large amounts of data for the Monte-Carlo method, we analyze thousands of computations or
more within a few seconds to measure how the integral metric performs with various types of data. For
instance, we can fix the integral to calculate 1,000 different values of the integrand, and then see how the
results change if we change the set X to be different intervals of R. We thereby test the correctness of the al-
gorithm, and we analyze the time complexity and error depending the type of data entered into the program.

Utilizing this numerical approximation algorithm for the integral metric, we can use this program to test how
the integral metric performs in various data analysis algorithms for established data sets. The K-Nearest
neighbors algorithm, a supervised learning algorithm, and the k-medoids algorithm, an unsupervised learning
algorithm, both use a metric for clustering and classifying data. Using the integral distance as the metric in
these algorithms, we extract useful information from data sets, such as the MNIST handwritten digits data
set. We plan on using it to analyze other image classification problems. Since our algorithm approximates
values of the integral distance, we can use the algorithm to calculate values of the metric needed for the data
analysis algorithms.
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4 Comparison with Other Metrics

4.1 Metric Comparisons

We use the Monte-Carlo algorithm to compare the integral metric with the Euclidean metric and the Haus-
dorff metric. We study the question of whether the metrics are strongly equivalent. Two metrics d1 and d2
defined on a non-empty set X are said to be strongly equivalent metrics, as stated in [[3], p. 86], if ∃c1, c2 > 0
such that c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y),∀x, y ∈ X. The program cannot prove the existence of such
bounds, but through computations we can estimate what these bounds may be.

The Euclidean metric is a metric on points, not on sets like the integral metric. Therefore, we reduce the
domain of the integral metric to singleton sets, and compare integral metric results for the distance between
the singleton sets to Euclidean metrics results for the distance between the points in those sets. Computation
results in 6.4 suggest an upper bound, dependent on the space X = [x0, x1]n ⊆ Rn, of (x1 − x0)

n
p . This

is proven in section 4.2 for R1. A lower bound was not found using this program, we prove this for R1 in
section 4.2. We have been exploring the results from this program to try to find lower bounds for R2 and
higher dimensional spaces.

We also use the Monte-Carlo algorithm to compare the integral metric to the Hausdorff metric, using a
predefined function for the Hausdorff metric in the scipy python package. This follows the definition of the
Hausdorff metric defined in [[5], p. 53]. As described in [5], the Hausdorff metric is a metric on hyperspaces,
just like the integral metric, so it returns a distance between sets. We are continuing to investigate whether
the algorithm leads to possible bounds to prove this is strongly equivalent to the integral metric, or whether
the algorithm provides a counterexample that the bounds do not exist and the two metrics are not strongly
equivalent.

4.2 Results

The following theorem is a consequence of corollary 3.1 in [[1], p. 148] when looking at singleton sets.

Theorem 1. Let A = {a}, B = {b}, such that a, b ∈ R. Let X = [c, d] ⊆ R such that c ≤ a ≤ b ≤ d. Also,
let d(x, y) be the Euclidean metric, and let Dp(A,B) be the p-th order integral metric. Then, Dp(A,B) =

d(a, b)(d− c− p|a−b|
p+1 )

1
p when p > 0.

Proof. In this case of R1, where A = {a} and B = {b} are singleton sets,

Dp(A,B) =

(∫ d

c

||x− a| − |x− b||pdx

) 1
p

.

We will now examine the integrand, which we will denote as f(x) = ||x−a|−|x−b||p. The derivative f is

given by is f ′(x) = p||x−a|−|x−b||p−1( |x−a|−|x−b|||x−a|−|x−b|| )(
x−a
|x−a|−

x−b
|x−b| ). By setting this equal to zero, we can find

the critical points, and the trivial critical points are at x = a or x = b. There is also another critical point at
x = a+b

2 . Now, since ||x−a|−|x−b||p = ||x−b|−|x−a||p, we can assume without loss of generality that a ≤ b.
Let ε > 0, and let x = a−ε. We then see that f(x) = f(a−ε) = ||a−ε−a|−|a−ε−b||p = |ε+a−ε−b|p = |a−b|p.
Now, let x = b+ ε, then f(b+ ε) = ||b+ ε− a| − |b+ ε− b||p = |b− a+ ε− ε|p = |a− b|p. By letting x = a or
x = b, we see that f(a) = ||a−a|− |a− b||p = |a− b|p, and f(b) = ||b−a|− |b− b||p = |a− b|p, so f(a) = f(b)
is either a global minimum or global maximum of this function. If we let 0 < ε < b−a, and we let x = a+ ε,
then f(x) = f(a+ε) = ||a+ε−a|−|a+ε−b||p = |ε−|a−b+ε||p = |ε+a−b+ε|p = |a−b+2ε|p = |2x−a−b|p.
For a < x < b, this is less than |a−b|, so f(a) = f(b) is a global maximum for this function. Now, to analyze
f , we first see when it equals 0, so this is the global minimum. This happens when x = a+b

2 . Now, we claim

that the function f is symmetric about this point; that is, f(y + a+b
2 ) = f(a+b

2 − y) ∀y ∈ X. We start with

the left hand side, where f(x + a+b
2 ) = ||x + a+b

2 − a| − |x + a+b
2 − b||

p = |2x|p. The right hand side is

f(a+b
2 − x) = ||a+b

2 − x− a| − |
a+b
2 − x− b||

p = |2x|p. The claim follows. We also note that |2x− a− b|p > 0
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when x > a+b
2 . Now, to evaluate the integral distance in this case:

Dp(A,B) =

(∫ d

c

||x− a| − |x− b||pdx

) 1
p

(1)

=

(
2

∫ b

a+b
2

(2x− a− b)pdx+ (a− c)|a− b|+ (d− b)|a− b|

) 1
p

(2)

=

(
|a− b|p+1

p+ 1
+ (a− c)|a− b|p + (d− b)|a− b|p

) 1
p

(3)

= |a− b|
(
a− b+ d− c+

|a− b|
p+ 1

) 1
p

(4)

= d(a, b)

(
d− c− p|a− b|

p+ 1

) 1
p

, (5)

when p > 0.

Theorem 2. When p ≥ 1, the integral metric is strongly equivalent to the Euclidean metric on X = [x0, x1] ⊆
R.

Proof. Let X = [x0, x1] ⊆ R, and let A = {a} and B = {b} such that x0 ≤ a ≤ b ≤ x1. Then, Theorem 1

tells us that Dp(A,B) = d(a, b)
(
x1 − x0 − p|a−b|

p+1

) 1
p

when p > 0. We need to find positive constants α and

β such that α ∗ d(a, b) ≤ Dp(a, b) ≤ β ∗ d(a, b) ∀a, b ∈ R. This is equivalent to α ≤
(
x1 − x0 − p|a−b|

p+1

) 1
p ≤ β.

The middle term has a maximum when |a − b| = 0, which implies that β = (x1 − x0)
1
p . The middle term

has a minimum when |a − b| is at its maximum. In this space, the maximum value is |a − b| = x1 − x0, so

the minimum value is
(

x1−x0

p+1

) 1
p

. This means that α =
(

x1−x0

p+1

) 1
p

.

The following lemmas are used to prove Theorem 3, which states that when 0 < p < 1, the integral
distance with the standard distance in R satisfies the triangle inequality. Since [1] shows that the integral
distance is always a semimetric, this means that the integral distance is a metric in this case.

Lemma 1. Let a, b, c ∈ R. If b < c < a or a < c < b, then |a− c| < |a− b|. If b < a < c or c < a < b, then
|a− c| < |b− c|. If a < b < c or c < b < a, then |a− c| = |a− b|+ |b− c|.

Proof. If b < c < a, then b−a < c−a, which means that |a−c| < |a−b|. If a < c < b, then c−a < b−a, which
implies that |a− c| < |a− b|. If b < a < c. then b− c < a− c, which means that |a− c| < |b− c|. If c < a < b,
then b−c > a−c, which implies that |a−c| < |b−c|. If a < b < c, then |a−b|+ |b−c| = b−a+c−b = |a−c|.
If c < b < a, then |a− b|+ |b− c| = a− b+ b− c = |a− c|.

Lemma 2. Let a, b, c, x0, x1, p ∈ R. Let x0 < x1, 0 < p < 1, |a− c| < |a− b|, and |a− c|,|a− b| < x1 − x0.

Also, let f(p) =

(
x1−x0− p|a−c|

p+1

x1−x0− p|a−b|
p+1

) 1
p

. Then, f is monotone decreasing on (0, 1).

Proof. We note that log (f(p)) = 1
p log

(
x1−x0− p|a−c|

p+1

x1−x0− p|a−b|
p+1

)
, and that

1

f(p)
f ′(p) =

p(x1 − x0)(|a− b| − |a− c|)− (p+ 1)2
(
x1 − x0 − p|a−c|

p+1

)(
x1 − x0 − p|a−b|

p+1

)
log

(
x1−x0− p|a−c|

p+1

x1−x0− p|a−b|
p+1

)
p2(p+ 1)2

(
x1 − x0 − p|a−c|

p+1

)(
x1 − x0 − p|a−b|

p+1

)
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We note that the denominator is positive, so the fraction has the same sign as the numerator. We also note
that f(p) > 0, so 1

f(p) > 0, and f ′(p) has the same sign as the numerator of this fraction. Now, denote the
numerator as

g(p) = p(x1−x0)(|a−b|−|a−c|)−(p+1)2
(
x1 − x0 −

p|a− c|
p+ 1

)(
x1 − x0 −

p|a− b|
p+ 1

)
log

(
x1 − x0 − p|a−c|

p+1

x1 − x0 − p|a−b|
p+1

)

Now, let

h(p) =
g(p)

(p+ 1)2
(
x1 − x0 − p|a−c|

p+1

)(
x1 − x0 − p|a−b|

p+1

)
=

p(x1 − x0)(|a− b| − |a− c|)

(p+ 1)2
(
x1 − x0 − p|a−c|

p+1

)(
x1 − x0 − p|a−b|

p+1

) − log

(
x1 − x0 − p|a−c|

p+1

x1 − x0 − p|a−b|
p+1

)

We see that the derivative is given by

h′(p) =
α

β

Where

α = (|a− c| − |a− b|) (x1 − x0) p
(
p
(
2x21 + x1 (−4x0 − 2 |a− c| − 2 |a− b|) + 2x20 + 2x0 (|a− c|+ |a− b|)

+ 2 |a− c| |a− b|) + 2x21 + x1 (−4x0 − |a− c| − |a− b|) + 2x20 + x0 (|a− c|+ |a− b|))

β = ((x1 − x0 − |b− a|) p+ x1 − x0)
2

((x1 − x0 − |c− a|) p+ x1 − x0)
2

We see that
(x1 − x0)(|a− b|+ |a− c|) < 2(x1 − x0)2,

so
2x21 + x1(−4x0 − |a− c| − |a− b|) + 2x20 + x0(|a− c|+ |a− b|) > 0.

We also see that

2[(x1 − x0)(|a− c|+ |a− b|)− |a− c||a− b|]
= 2[|a− b|(x1 − x0 − |a− b|) + (x1 − x0)|a− b|
< 2(x1 − x0)(x1 − x0)

= 2(x1 − x0)2,

which shows that

2x21 + x1(−4x0 − 2|a− c| − 2|a− b|) + 2x20 + 2x0(|a− c|+ |a− b|) + 2|a− c||a− b| > 0.

We see that β > 0, and since (|a− c| − |a− b|) < 0, α < 0. That means that h′(p) < 0, and since h(0) = 0,
h(p) < 0, then g(p) < 0 and f ′(p) < 0. Therefore, for 0 < p < 1, f(p) is monotone decreasing.

Lemma 3. Let x, y, a ∈ R, where 0 < x,y ≤ a. Then, log (x)− log (y) < 1
a (x− y) implies that x < y.

Proof. If log (x) − log (y) < 1
a (x − y), then x

a − log (x) > y
a − log (y). Let f(x) = x

a − log (x). Then
f ′(x) = 1

a −
1
x . Consequently, f has no critical points on the interval (0, a), and we see that it is decreasing

on this interval. Since, x
a − log (x) > y

a − log (y), it follows that x < y.

Theorem 3. Let x0, x1, p ∈ R, X = [x0, x1], and 0 < p < 1. Let Dp be the integral distance restricted to
the interval X with the Euclidean metric on R. Then, Dp is a metric.
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Proof. Let a, b, c ∈ X. From [1], we know that Dp is a symmetric, so we only need to prove the triangle

inequality. We know that Dp({a}, {b}) = |a−b|
(
x1 − x0 − p|a−b|

p+1

) 1
p

. The triangle inequality Dp({a}, {c}) ≤

Dp({a}, {b}) +Dp({b}, {c}) is therefore equivalent to stating that |a− c|
(
x1 − x0 − p|a−c|

p+1

) 1
p ≤

|a − b|
(
x1 − x0 − p|a−b|

p+1

) 1
p

+ |b − c|
(
x1 − x0 − p|b−c|

p+1

) 1
p

. If a = b, b = c, or a = c, then it is trivially true.

If a < b < c or c < b < a, then by Lemma 6

|a− c|
(
x1 − x0 −

p|a− c|
p+ 1

) 1
p

= |a− b|
(
x1 − x0 −

p|a− c|
p+ 1

) 1
p

+ |b− c|
(
x1 − x0 −

p|b− c|
p+ 1

) 1
p

≤ |a− b|
(
x1 − x0 −

p|a− b|
p+ 1

) 1
p

+ |b− c|
(
x1 − x0 −

p|b− c|
p+ 1

) 1
p

,

as |a−c| ≥ |a−b|, |b−c|. From lemma 6, we know that in the other cases either |a−c| < |a−b| or |a−c| < |b−c|.

Assume without loss of generality that |a − c| < |a − b|. Also, assume that |a − c|
(
x1 − x0 − p|a−c|

p+1

) 1
p

>

|a− b|
(
x1 − x0 − p|a−b|

p+1

) 1
p

. Then,

|a− b|
|a− c|

<

(
x1 − x0 − p|a−c|

p+1

x1 − x0 − p|a−b|
p+1

) 1
p

< lim
p→0

(
x1 − x0 − p|a−c|

p+1

x1 − x0 − p|a−b|
p+1

) 1
p

= e
1

x1−x0
(|a−b|−|a−c|)

since by Lemma 7

(
x1−x0− p|a−c|

p+1

x1−x0− p|a−b|
p+1

) 1
p

is monotonically decreasing for 0 < p < 1. This shows that

log (|a− b|)− log (|a− c|) < 1

x1 − x0
(|a− b| − |a− c|)

. By Lemma 8, this means that |a− b| < |a− c|. Therefore, by the contrapositive,

|a− c|
(
x1 − x0 −

p|a− c|
p+ 1

) 1
p

≤ |a− b|
(
x1 − x0 −

p|a− b|
p+ 1

) 1
p

≤ |a− b|
(
x1 − x0 −

p|a− b|
p+ 1

) 1
p

+ |b− c|
(
x1 − x0 −

p|b− c|
p+ 1

) 1
p

and Dp satisfies the triangle inequality and so is a metric.

5 Computer Vision Efficacy

We analyze how well the integral distance performs in analyzing the MNIST data set consisting of hand-
written numbers. We used the k-medoids algorithm to classify subsets of a standardized training data set
of 60,000 entries into 20 different clusters, and then used a testing data set on a subset of 10,000 entries to
assess the clustering accuracy. Each number can be represented with more than one cluster, as the algorithm
is intended to recognize more than one way that a number was drawn.

Each cluster was found through the heuristic PAM algorithm detailed in [4]. All 20 medoids for the clusters
were randomly chosen, using the previously defined pseudorandom number generator, and then each medoid
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was swapped with each non-medoid in the data set in order to find the minimum of the sum of the integral
distance between each medoid and non-medoid. The final 20 medoids were chosen as the 20 points that
minimized this distance. Graphs of the results of this approach are presented in the Appendix. Comparisons
of the error of this method compared to other methods are also in the Appendix.

We perform a preliminary analysis of this data set, and we plan to research it more in the future. For
this analysis, we ran the k-medoids algorithm 50 times each for the integral distance and the euclidean
distance. Each run randomly selected 100 points to train the data, and 25 points to test the classification of
the digits. The integral distance marginally outperformed the euclidean distance, with the former correctly
classifying 37.6% of the digits, and the latter correctly classifying 34.24% of the digits. The integral distance
does have a parameter that can be adjusted to chance how well it performs, and we plan on looking into
how this changes the result of the k-medoids algorithm in the future.

6 Appendix

6.1 Time Complexity Graphs

All graphs in 6.1 and 6.2 were generated with 1,000 randomly generated data points, every parameter was
held constant except for the parameter listed on the horizontal axis.
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6.2 Error Graphs
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6.3 K-medoids Efficacy

Below is the graph of the efficacy of both distance functions on the MNIST data set, as specificed in Section
5.

6.4 Generated Data

The following is a sample of the results of the Monte-Carlo algorithm computing the integral distance
as compared to the Euclidean metric. The sets A and B are the singleton sets being used to compare
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the metrics, and the distances from both metrics are printed. We set p = 1, the dimension to 1, and
X = [x0, x1] = [0, 1000] in this case. Alpha and beta are used to look at the bounds for strong equivalence.
Alpha and beta are the lower and upper bounds for the integral metric divided by the euclidean metric for
the data generated below, respectively. While this doesn’t prove anything, the upper bound, beta, is less
than x1 − x0. From extensive testing, beta has always been less than or equal to (x1 − x0)

n
p , where n is the

dimension.

A: [ [ 9 0 6 . 5 6 7 5 8 9 3 2 ] ]
B: [ [ 9 . 7 9 4 2 2 5 5 3 ] ]
Eucl idean Distance between a and b : 896.7733637855572
I n t e g r a l Metric between A and B: 500141.65950534324

A: [ [ 1 9 6 . 1 9 7 4 9 2 7 8 ] ]
B: [ [ 6 1 3 . 3 5 3 8 7 0 5 2 ] ]
Eucl idean Distance between a and b : 417.15637773805804
I n t e g r a l Metric between A and B: 330041.93859942263

A: [ [ 5 8 2 . 3 1 0 9 2 3 9 2 ] ]
B: [ [ 5 4 7 . 9 3 6 2 2 0 1 3 ] ]
Eucl idean Distance between a and b : 34.374703787599856
I n t e g r a l Metric between A and B: 33736.111280209065

A: [ [ 9 3 3 . 5 7 6 7 8 3 0 2 ] ]
B: [ [ 1 3 7 . 7 4 8 3 1 6 5 5 ] ]
Eucl idean Distance between a and b : 795.8284664744394
I n t e g r a l Metric between A and B: 485955.0512513258

A: [ [ 2 4 4 . 2 7 7 5 3 9 3 8 ] ]
B: [ [ 4 4 1 . 7 1 6 3 9 0 0 2 ] ]
Eucl idean Distance between a and b : 197.43885064719825
I n t e g r a l Metric between A and B: 175629.55182000058

A: [ [ 8 5 8 . 9 3 6 3 8 7 2 2 ] ]
B: [ [ 5 5 3 . 9 3 3 1 5 2 9 3 ] ]
Eucl idean Distance between a and b : 305.00323428612955
I n t e g r a l Metric between A and B: 258956.7470561114

A: [ [ 7 7 9 . 3 0 5 0 7 0 4 9 ] ]
B: [ [ 6 3 8 . 4 0 9 9 7 5 2 ] ]
Eucl idean Distance between a and b : 140.89509529388886
I n t e g r a l Metric between A and B: 130271.77394099499

A: [ [ 1 2 0 . 7 9 4 9 4 2 1 7 ] ]
B: [ [ 4 3 6 . 3 6 6 2 1 1 5 9 ] ]
Eucl idean Distance between a and b : 315.5712694179785
I n t e g r a l Metric between A and B: 267637.00401316746

A: [ [ 8 8 0 . 0 6 8 6 5 6 0 2 ] ]
B: [ [ 9 3 7 . 9 4 5 1 4 8 3 8 ] ]
Eucl idean Distance between a and b : 57.87649235430263
I n t e g r a l Metric between A and B: 56361.3849500228

A: [ [ 7 7 9 . 2 1 6 8 3 8 0 7 ] ]
B: [ [ 9 7 9 . 5 8 2 4 7 6 9 6 ] ]
Eucl idean Distance between a and b : 200.36563888979788
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I n t e g r a l Metric between A and B: 178838.32563905822

Alpha : 557.7124385074184
Beta : 981.4226033382969

6.5 Numerical Approximation Program

Displayed below is the python program that randomly generates sets of data that can be plugged into the
Monte-Carlo algorithm in order to analyze the integral metric and other metrics. Everything about the
set X, the sets A and B, the p-value, the sample size, and the confidence level are customizable, and are
randomly generated by default.

import numpy as np
import sys

dataAmount = 1000 #Datasets

f = open ( ’ dataOutput . txt ’ , ’w’ ) #F i l e to output to
f o r i in range ( dataAmount ) :

p = 1
f . wr i t e ( ’ p−value : ’ + s t r (p) + ’\n ’ ) #p−value f o r the i n t e g r a l
dimension = np . random . rand int ( low=1, high =11) #dimension between low and

high−1
f . wr i t e ( ’ Dimension : ’ + s t r ( dimension ) + ’\n ’ )
highX = 1000 #upper l i m i t o f the p o s s i b l e X i n t e r v a l
low l im = highX ∗ np . random . random sample ( ) #lower l i m i t o f X i n t e r v a l

between 0 and highX
upper l im = ( highX − l ow l im ) ∗ np . random . random sample ( ) + low l im #upper

l i m i t o f X i n t e r v a l between low l im and highX
f . wr i t e ( ’X i n t e r v a l : [ ’ + s t r ( low l im ) + ’ , ’ + s t r ( upper l im ) + ’ ]\n ’ )
numPoints = np . random . rand int ( low=1, high =1001) #sample s i z e between low

and high−1
f . wr i t e ( ’ Sample S i z e : ’ + s t r ( numPoints ) + ’\n ’ )
APoints = np . random . rand int ( low=1, high =1001) #c a r d i n a l i t y o f the s e t A;

between low and high−1
f . wr i t e ( ’ Set A: { ’ )
i f ( dimension == 1) : #I f the dimension i s 1 , don ’ t p r i n t out t u p l e s . Only

p r in t f l o a t i n g po in t s
f o r i in range ( APoints − 1) :

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) + ’ , ’ )

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) )

e l s e :
f o r i in range ( APoints ) : #loop gene ra t e s a number o f po in t s in Rˆ

dimension equal to the c a r d i n a l i t y o f the s e t
f . wr i t e ( ’ ( ’ )
f o r j in range ( dimension − 1) :

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( )
+ low l im ) + ’ , ’ )

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) + ’ ) ’ )

i f ( i != APoints − 1) : #I f t h i s i s not the l a s t po int to p r i n t out ,
output a comma a f t e r the ending p a r e n t h e s i s
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f . wr i t e ( ’ , ’ )
f . wr i t e ( ’}\n ’ )

f . wr i t e ( ’ Set B: { ’ )
BPoints = np . random . rand int ( low=1, high =1001) #c a r d i n a l i t y o f the s e t B;

between low and high−1
i f ( dimension == 1) : #I f the dimension i s 1 , don ’ t p r i n t out t u p l e s . Only

p r in t f l o a t i n g po in t s
f o r i in range ( BPoints − 1) :

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) + ’ , ’ )

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) )

e l s e :
f o r i in range ( BPoints ) : #loop gene ra t e s a number o f po in t s in Rˆ

dimension equal to the c a r d i n a l i t y o f the s e t
f . wr i t e ( ’ ( ’ )
f o r j in range ( dimension − 1) :

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( )
+ low l im ) + ’ , ’ )

f . wr i t e ( s t r ( ( upper l im − l ow l im ) ∗ np . random . random sample ( ) +
low l im ) + ’ ) ’ )

i f ( i != BPoints − 1) : #I f t h i s i s not the l a s t po int to p r i n t out ,
output a comma a f t e r the ending p a r e n t h e s i s
f . wr i t e ( ’ , ’ )

f . wr i t e ( ’}\n ’ )

con f idence = 0.05 #Conf idence i n t e r v a l f o r s t a t i s t i c a l a n a l y s i s
f . wr i t e ( ’ Conf idence Level : ’ + s t r ( con f idence ) + ’\n ’ )
f . wr i t e ( ’\n ’ )

f . c l o s e ( )

The python program below is the Monte-Carlo Integration algorithm for the integral metric. It also includes
computations for the Euclidean metric and the Hausdorff metric. It takes in values from the file generated
by the program above, and outputs a file giving the values of the metrics.

import numpy as np
import s c ipy . s t a t s as s t
import t i m e i t
import re
from sc ipy . s p a t i a l . d i s t anc e import d i r e c t e d h a u s d o r f f

b e taL i s t = [ ]

#Opens the f i l e , s t o r e s the contents , and then c l o s e s i t
f 1 = open ( ’ dataOutput . txt ’ , ’ r ’ )
contents = f1 . r e a d l i n e s ( )
f 1 . c l o s e ( )

f 2 = open ( ’ metricCompare . txt ’ , ’w’ )

#s t a r t = t i m e i t . d e f a u l t t i m e r ( )

#Ca l cu l a t e s the i n t e g r a l
de f i n t e g r a l (x , p ) :
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re turn ( abs ( x [ 0 ] − x [ 1 ] ) ∗∗ p)

#Calcu la te the infimum us ing a brute f o r c e method
de f f i n d I n f (x , dimension , A, B) :

#I n i t i a l i z e s the infimum va lue s to i n f i n i t y , so at l e a s t something in the
s e t w i l l

#be l e s s than i t
infimumA = np . I n f i n i t y
infimumB = np . I n f i n i t y

#Loops over the A s e t
f o r i in range ( l en (A) ) :

storeA = 0

#Calcu la te the euc l i d ean metr ic f o r a g iven dimension
f o r j in range ( dimension ) :

storeA += ( x [ j ] − A[ i ] [ j ] ) ∗∗2
storeA = np . s q r t ( storeA )

#Store the lowest va lue as the infimum
i f ( storeA <= infimumA ) :

infimumA = storeA

#Perform the same c a l c u l a t i o n s f o r the B s e t
f o r i in range ( l en (B) ) :

storeB = 0
f o r j in range ( dimension ) :

storeB += ( x [ j ] − B[ i ] [ j ] ) ∗∗2
storeB = np . s q r t ( storeB )

i f ( storeB <= infimumB ) :
infimumB = storeB

#Return d A ( x ) and d B ( x )
re turn ( infimumA , infimumB )

de f i n t e g r a t e (p , dimension , numPoints , X, volume , A, B, con f idence ) :
#I n i t i a l i z e a vec to r as the zero vec to r in Rˆn , where n i s the number o f

dimensions
x = [ 0 f o r i in range ( dimension ) ]
i n t e g r a l V a l = 0 .0
in t eg ra lSquared = 0 .0
#Loop over a l l the po in t s that should be c a l c u l a t e d
f o r i in range ( numPoints ) :

#Generate a vec to r in Rˆn with a l l va lue s between 0 and 1
f o r j in range ( dimension ) :

x [ j ] = np . random . uniform ( low=X[ 0 ] , high=X[ 1 ] )

#Returns the value o f the i n t e g r a l f unc t i on
funcva l = i n t e g r a l ( f i n d I n f (x , dimension , A, B) , p)

#Sums up each func t i on value so that i t can be used to approximate the
i n t e g r a l

#and the i n t e g r a l squared
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i n t e g r a l V a l += funcva l
in t eg ra lSquared += funcva l ∗∗ 2

#Desc r ibe s the i n t e g r a l
#pr in t (” I n t e g r a l metr ic in Rˆ” + s t r ( dimension ) + ” over [ ” + s t r (X[ 0 ] ) +

” , ” + \
#s t r (X[ 1 ] ) + ” ]ˆ” + s t r ( dimension ) + ” with p = ” + s t r (p) + ” , A = ” +

s t r (A) + ” and B = ” + s t r (B) + ” : ” )

#Uses the volume and number o f po in t s to c a l c u l a t e the i n t e g r a l va lue
in t eg ra lAverage = i n t e g r a l V a l / numPoints
integra lSquaredAverage = int eg ra lSquared / numPoints

s o l v e d I n t e g r a l = volume ∗ i n t eg ra lAverage

euc l ideanMetr i c = euc l i d ean ( dimension , A, B)
beta = ( s o l v e d I n t e g r a l ∗∗ (1/p) ) / euc l ideanMetr i c
#h a u s d o r f f d i s t a n c e = Hausdor f f (A,B)
#beta = ( s o l v e d I n t e g r a l ∗∗ (1/p) ) / h a u s d o r f f d i s t a n c e
be taL i s t . append ( beta )

#Pr int s out the i n t e g r a l va lue
#pr in t ( s o l v e d I n t e g r a l ∗∗(1/p) )
f 2 . wr i t e ( ’ I n t e g r a l Metric between A and B: ’ + s t r ( s o l v e d I n t e g r a l ∗∗ (1/p)

) + ’\n\n ’ )

#pr in t (” Standard Error : ”)
#Ca l cu l a t e s the standard e r r o r o f the i n t e g r a l
s t d e r r o r = volume ∗ np . s q r t ( ( integra lSquaredAverage − ( in t eg ra lAverage ∗∗

2) ) / numPoints )

#pr in t ( s t d e r r o r )
#Pr in t s a con f idence i n t e r v a l f o r the value o f the i n t e g r a l
zVal = s t . norm . ppf (1− ( con f idence / 2) )
lowLim = s o l v e d I n t e g r a l − zVal ∗ s t d e r r o r
upperLim = s o l v e d I n t e g r a l + zVal ∗ s t d e r r o r
#pr in t ( s t r ((1− con f idence ) ∗ 100) + ”% Conf idence I n t e r v a l : (” + s t r ( lowLim

) + ” , ” + s t r ( upperLim ) + ”) ”)
#pr in t (” Conf idence i n t e r v a l width : ” + s t r ( upperLim − lowLim ) )

de f euc l i d ean ( dimension , A, B) :
s t o r eMet r i c = 0

#Calcu la te the euc l i d ean metr ic f o r a g iven dimension
f o r j in range ( dimension ) :

s t o r eMet r i c += (A[ 0 ] [ j ] − B [ 0 ] [ j ] ) ∗∗2
s to r eMet r i c = np . s q r t ( s t o r eMet r i c )
f 2 . wr i t e (” Eucl idean Distance between a and b : ” + s t r ( s t o r eMet r i c ) + ’\n ’ )
re turn s to r eMet r i c

#Ca l cu l a t e s Hausdor f f Distance f o r A, B
de f Hausdor f f (A,B) :

hausdor f f = max( d i r e c t e d h a u s d o r f f (A,B) [ 0 ] , d i r e c t e d h a u s d o r f f (B,A) [ 0 ] )
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f 2 . wr i t e (” Hausdor f f Metr ic bewteen A and B: ” + s t r ( hausdor f f ) + ’\n ’ )
re turn hausdor f f

#Regular exp r e s s i on to check i f input from f i l e i s a number
r eg ex = re . compi le ( r ”[−+]?\d∗\ .\d+|\d+”)

#Reads in a f i l e with any amount o f data , must have the f o l l o w i n g 8 l i n e s :
#p−value
#dimension
#X i n t e r v a l
#numPoints
#L i s t o f numbers f o r A
#L i s t o f numbers f o r B
#Confidence l e v e l
#Empty l i n e
f o r i in range ( l en ( contents ) // 8) :

#I n i t i a l d e c l a r a t i o n s o f the s e t s A and B
A = [ ]
B = [ ]
X = [ ]

p = f l o a t ( r eg ex . f i n d a l l ( contents [ 8∗ i ] ) [ 0 ] ) #Uses the r e g u l a r exp r e s s i on
to get the p−value from the f i l e

dimension = i n t ( r eg ex . f i n d a l l ( contents [ 8∗ i + 1 ] ) [ 0 ] ) #Find the dimension
from the f i l e

X. extend ( [ f l o a t ( i ) f o r i in r eg ex . f i n d a l l ( contents [ 8∗ i + 2 ] ) ] ) #Finds the
X−i n t e r v a l from the f i l e

volume = (X[ 1 ] − X[ 0 ] ) ∗∗ dimension #Ca l cu l a t e s the volume o f the r eg i on
i n t e g r a t e d over

numPoints = i n t ( r eg ex . f i n d a l l ( contents [ 8∗ i +3]) [ 0 ] ) #Grabs the s i z e o f the
sample space

A. extend ( [ f l o a t ( i ) f o r i in r eg ex . f i n d a l l ( contents [ 8∗ i + 4 ] ) ] ) #Store s
the po in t s in the s e t B

A = np . reshape (A, ( l en (A) // dimension , dimension ) ) #Reshapes the s e t A to
match the dimension o f the space

B. extend ( [ f l o a t ( i ) f o r i in r eg ex . f i n d a l l ( contents [ 8∗ i + 5 ] ) ] ) #Store s
the po in t s in the s e t B

B = np . reshape (B, ( l en (B) // dimension , dimension ) ) #Reshapes the s e t B to
match the dimension o f the space

con f idence = f l o a t ( r eg ex . f i n d a l l ( contents [ 8∗ i + 6 ] ) [ 0 ] ) #Grabs the
con f idence l e v e l

f 2 . wr i t e ( ’A: ’ + s t r (A) + ’\n ’ )
f 2 . wr i t e ( ’B: ’ + s t r (B) + ’\n ’ )
s t a r t = t i m e i t . d e f a u l t t i m e r ( ) #S t a r t s a t imer
i n t e g r a t e (p , dimension , numPoints , X, volume , A, B, con f idence ) #

I n t e g r a t e s us ing the inputted va lues
stop = t i m e i t . d e f a u l t t i m e r ( ) #Stops the t imer
time = stop − s t a r t #Ca l cu l a t e s the time needed to c a l c u l a t e the i n t e g r a l

metr ic
#pr in t ( ’ ’ )

#Writes to the f i l e to d i s p l ay r e s u l t s o f the program
f2 . wr i t e ( ’ Alpha : ’ + s t r ( min ( be taL i s t ) ) + ’\n ’ )
f 2 . wr i t e ( ’ Beta : ’ + s t r (max( be taL i s t ) ) + ’\n ’ )
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be taL i s t = np . array ( be taL i s t )
f 2 . wr i t e ( ’Mean : ’ + s t r ( be taL i s t . mean ( ) ) + ’\n ’ )
f 2 . wr i t e ( ’STD: ’ + s t r ( be taL i s t . s td ( ) ) )
f 2 . c l o s e ( )

7 Acknowledgements

I would like to thank Dr. Insall for advising me throughout this research and guiding me towards novel ideas
to advance this project, and for his help in revising this paper. I would also like to thank Dr. Eric Hanson
for his help in verifying the proofs and designing the algorithms in this paper.

References

[1] Charatonik, Wlodzimierz & Insall, Matt. (2006). Metrics on Hyperspaces: A Practical Approach. Topol-
ogy Proceedings. 30. 129-152.

[2] Weinzierl, Stefan. (2000). Introduction to Monte Carlo Methods. ArXiv High Energy Physics - Phe-
nomenology e-prints. 10.1007/978-0-387-87837-9 1.

[3] Petrusel, Adrian & Rus, Ioan & Serban, Marcel-Adrian. (2013). The role of equivalent metrics in fixed
point theory. Topological methods in nonlinear analysis. 41. 85-112.

[4] Schubert, E., & Rousseeuw, P. (2019). Faster k-Medoids Clustering: Improving the PAM, CLARA, and
CLARANS Algorithms. ArXiv, abs/1810.05691.

[5] Deza, Michel & Deza, Elena. (2016). Encyclopedia of Distances. 10.1007/978-3-662-52844-0.

19


	Introduction
	Time Complexity and Error Analysis
	Numerical Approximation Results
	Comparison with Other Metrics
	Metric Comparisons
	Results

	Computer Vision Efficacy
	Appendix
	Time Complexity Graphs
	Error Graphs
	K-medoids Efficacy
	Generated Data
	Numerical Approximation Program

	Acknowledgements

