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Abstract Insulating non-magnetic solids conduct heat through the lattice vibrations, also 
colloquially known as phonons. In magnetic solids, additional channels for heat transport are 
available through the interaction of magnetic moments. Opposing this interaction are lattice 
vibrations which couple with the magnetic moments on the atoms and thus provide additional 
resistance to heat flow. There is currently no complete understanding of the magnitudes of 
these contributions, and the overall effect of the magnetic contribution is largely unknown. 
Using a combination of spin dynamics and molecular dynamics simulations, we modeled the 
contribution of the magnetic subsystem to the lattice thermal conductivity across 
ferromagnetic to paramagnetic transitions in elemental Iron. Application of the approach to the 
anti-ferromagnetic materials is discussed for the example of the technologically important 
material, uranium dioxide. 

Introduction Pressed uranium dioxide (UO2) pellets are used in the nuclear fuel rods in over 
90% of nuclear fission reactors on the planet, covering roughly 14% of global electricity 
consumption [1]. These fuel rods, which are organized into fuel assemblies, are specifically 
designed to allow optimal heat transfer to the water surrounding the fuel assembly during 
reactor operation. One of the limiting factors of fuel assembly design is the thermal 
conductivity constant of UO2, which can be calculated using Fourier’s law of thermal 

conduction,  𝐽𝑧 = −𝑘𝑧
𝑑𝑇

𝑑𝑧
 , where 𝐽𝑧 , 𝑘𝑧 and  

𝑑𝑇

𝑑𝑧
 represent z-direction heat flux, thermal 

conductivity, and temperature gradient, respectively. 

If the thermal conductivity of UO2 is lower than expected, then the cores of each fuel pellets 
may overheat, requiring a smaller diameter fuel pellet for safe operation, with the opposite 
being true if thermal conductivity is larger than expected. Thermal conductivity in cubic fluorite 
structures is presumed to be isotropic (symmetric) due to its symmetric structure. Prior 
experimental results show anisotropic thermal conductivity for UO2, which suggests that there 
is a directional dependence for the value of thermal conductivity [2]. These results were 
supported by molecular dynamics (MD) simulations using classical interatomic potentials, which 
are infeasible due to the lack of magnetic interaction present in the interatomic potential used. 
MD simulations which we reproduced using these classical interatomic potentials showed a 
magnitude of anisotropy of 0.04%, compared to 14.2% as measured by Gofryk et al. A possible 
explanation for this discrepancy is due to UO2’s anti-ferromagnetic properties at very low 
temperatures. 
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Figure 1 | Anisotropic and Isotropic UO2 thermal conductivity from MD simulations. The 
thermal conductivity (k) variation (k-1) as a function of the length of the simulation cell (Lz

-1) for 
the temperature gradient applied in the <100> <110> and <111> lattice directions at 300K. (a) 
Inset from Gofryk et al compares the experimentally measured thermal conductivity values in 
the <100> and <111> lattice directions from the non-equilibrium MD simulations [1]. Trendlines 
indicate linear and quadratic fits used for extrapolation to infinite length simulation cells (K∞). 
(b) Inset compares the experimentally measured thermal conductivity values in the <100> 
<110> and <111> lattice directions from the non-equilibrium MD simulations. Trendlines 
indicate linear fits to the data used for extrapolation to infinite length simulation cells (K∞). 
 
Recent developments using the LAMMPS spin dynamics (SD) simulation package, in conjunction 
with MD simulation, allow for the possibility of an accurate determination of UO2’s thermal 
conductivity properties. The spin structure of UO2, which previously has not been accounted 
for, is most closely approximated as anti-ferromagnetic at low temperatures. 

Methods MD simulations using classical potentials for UO2 employed the direct method, in 
which non-equilibrium MD simulations apply a heat flux across a material, to calculate thermal 
conductivity using Fourier’s law. All calculations were performed with scalable parallel short-
range LAMMPS MD code, closely following the study by Watanabe et al [3]. A constant heat flow 
ranging from 0.5 to 2 eV/ps was applied per time step depending on system size. The length of 
the rectangular cuboid simulation cell systems varied from 40-500 nm along the <100> <110> 
and <111> crystallographic directions and consisted of a face-centered cubic (fcc) lattice 
structure. The time step size was 1.0 fs in all simulations. To equilibrate the thermal properties 
of the systems, each simulation performed a constant temperature and pressure (NVT) 
simulation for 10 ps. The heat flow was applied to each simulation for 300ps after the NVT 
simulation, generating a thermal gradient. A runtime ranging from 300-2000ps (varying based 
on system size) was needed for the thermal gradient to reach steady state, with the last 300ps 
of each simulation being used as the data acquisition time. Statistical analysis was used to 
extrapolate thermal conductivity measurements to a simulation cell of infinite length, where 
errors of 2.16%, 0.96% and 1.10% were associated with measurements along the <100> <110> 
and <111> crystallographic directions, respectively [4]. 

The approach used by Gofryk et al to determine UO2’s thermal conductivity relies on the 
aforementioned direct method, which used classical potential developed by Basak et al in 2003 
[5]. Basak’s model employs the following potential formula: 

𝑉(𝑟𝑖𝑗) = 𝑉𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) + 𝑉𝐵𝑢𝑐𝑘(𝑟𝑖𝑗) + 𝑉𝑀𝑜𝑟𝑠𝑒(𝑟𝑖𝑗) (1) 

where 𝑉(𝑟𝑖𝑗) is the potential energy of two atoms (i and j) separated by a distance 𝑟𝑖𝑗. The first 

term in the equation defines the long-range electrostatic interaction between the two atoms 
with charges 𝑞𝑖 and 𝑞𝑗 (with 𝜖𝑜 being the permittivity of free space). 

𝑉𝐶𝑜𝑢𝑙(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖𝑜𝑟𝑖𝑗
 (2) 
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With the Coulomb interaction being accounted for, this leaves the short-range Buckingham and 
Morse interactions, which are defined as the following: 

𝑉𝐵𝑢𝑐𝑘(𝑟𝑖𝑗) = 𝑓0𝑏𝑖𝑗exp (
𝑎𝑖𝑗 − 𝑟𝑖𝑗

𝑏𝑖𝑗
) −

𝐶𝑖𝑗

𝑟6
𝑖𝑗

 (3) 

𝑉𝑀𝑜𝑟𝑠𝑒(𝑟𝑖𝑗) = 𝑓0𝑑𝑖𝑗[exp{−2𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟∗
𝑖𝑗)} − 2exp{−𝛾𝑖𝑗(𝑟𝑖𝑗 − 𝑟∗

𝑖𝑗)}] (4) 

where the terms 𝑓𝑜, 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝐶𝑖𝑗, 𝐷𝑖𝑗, 𝛾𝑖𝑗, and 𝑟∗
𝑖𝑗 specify each pair interaction. The values for 

each term are given in the following table, taken from Basak’s model: 

 

The purpose of the classical potential used in Basak’s model, is to generate accurate positions 
of atoms and interatomic interactions in a molecular lattice structure, which can then be used 
in an MD simulation to measure thermal properties. The classical potential’s drawback is that it 
is an approximation, and it fails to capture the influence of a material’s spin structure on its 
thermal properties. This can be rectified with the inclusion of the LAMMPS SPIN package, which 
allows for the study of the magnetic properties of materials through simulation of atomic 
magnetic spins coupled to lattice vibrations. 

Of the six magnetic interatomic interactions defined by the SPIN package, the exchange 
interaction between pairs of magnetic spins is given as the following summation over pairs of 
nearest neighbors: 

𝑯𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = − ∑ 𝐽(𝑟𝑖𝑗) 𝑠𝑖 ∗ 𝑠𝑗

𝑁

𝑖,𝑗,𝑖≠𝑗

 (5) 

Where the neighboring magnetic spins of atoms i and j, are represented as unit vectors 𝑠𝑖 and 

𝑠𝑗, and 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| is the interatomic distance between these two atoms. The function 𝐽(𝑟𝑖𝑗) 

is a function defining the magnitude and the sign of the exchange interaction for different 
neighboring shells, with a negative sign simulating an anti-ferromagnetic system, and a positive 
sign simulating a ferromagnetic system.  

From the exchange interaction, each spin 𝑖 will have a magnetic torque �⃗⃗⃗�𝑖 and a force �⃗�𝑖  
applied for spin-lattice calculations such as the following: 
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�⃗⃗⃗�𝑖 =
1

ℏ
∑ 𝐽(𝑟𝑖𝑗) 𝑠𝑗

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑗

 𝑎𝑛𝑑 �⃗�𝑖 = ∑
𝜕𝐽(𝑟𝑖𝑗)

𝜕𝑟𝑖𝑗
(𝑠𝑖 ∗ 𝑠𝑗

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑗

)𝑒𝑖𝑗                                                       (6) 

With ℏ is Planck’s constant and 𝑒𝑖𝑗 =
𝑟𝑖−𝑟𝑗

|𝑟𝑖−𝑟𝑗|
 is the unit vector between neighboring sites 𝑖 and 𝑗. 

Using the exchange interaction detailed above allows us to simulate coupled spin dynamics and 
molecular dynamics as described by Tranchida et al [6]. Due to the present lack of a magnetic 
description of UO2, we instead will use Iron as an analogue. Three operations are applied to a 
box consisting of 10x10x10 iron atoms in a body-centered cubic (bcc) lattice arrangement. The 
first operation applies a precession torque to each magnetic spin in the group. The second 
operation accounts for temperature effects from the first operation by connecting the spin 𝑖 to 
a thermal bath using a Langevin thermostat. The third and final operation performs a 
symplectic integration with a microcanonical ensemble (NVE) for the spin-lattice system, 
accounting for motion effects. Systems ranging from 50-1000 degrees Kelvin were simulated 
using time steps of 1.0 fs in all simulations. The quantities of the x y and z coordinates of the 
total magnetization, along with the norm of the total magnetization was gathered from all 
systems. Magnetization data followed expected behavior ferromagnetic and anti-ferromagnetic 
behavior, as well as phase transition behavior, as determined by the exchange interactions.   

Discussion To determine the contribution of the magnetic subsystem on the lattice thermal 
conductivity of the iron, a temperature gradient must be induced in the lattice. Fourier’s law 
can then be used to calculate the thermal conductivity constant for the material in question. 
This can eventually be done with the technologically important material, UO2, across its anti-
ferromagnetic, ferromagnetic, and paramagnetic phases, allowing a proper analysis of the 
magnetic subsystem’s contribution to the thermal conductivity of the material. 

The absence of a description for UO2’s magnetic interactions currently prohibits any 
determination of the contribution of UO2’s magnetic sublattice on its thermal properties. If the 
magnetic interactions of UO2 become known in the future, then following the methods laid out 
above using the coupled spin and molecular dynamics approach can lead to the accurate 
determination of UO2’s thermal conductivity and of any possible anisotropic behavior.  

Results A visual representation of the spin vectors in an Iron (Fe) lattice shows expected 
ferromagnetic, anti-ferromagnetic behavior at 300 degrees Kelvin, as well as expected 
paramagnetic behavior at 1000 degrees Kelvin, as shown below: 
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The spins in the ferromagnetic iron lattice are shown to have a clear unidirectional alignment, 
correlating positively with expectations. The spins in the anti-ferromagnetic iron lattice, show 
an opposite alignment, correlating positively with expected behavior. Note that the anti-
ferromagnetic iron lattice was simulated using a negative exchange interaction and that iron is 
not anti-ferromagnetic in nature at these temperatures. The spins in the paramagnetic iron 
lattice show disorder in the spin, again correlating with expected behavior.  

Plotting magnetization versus temperature for the ferromagnetic iron lattice sample shows the 
ferromagnetic to paramagnetic transition occurring as the temperature approaches 1000 
degrees Kelvin. 

  

This rapid decrease in magnetization of the iron lattice as the temperature reaches 1000 
degrees Kelvin is significant, as it correlates with the Curie point of iron, the point at which 
magnetization is destroyed due to extreme heat. 

Conclusion Now that we understand that the approach using spin and molecular dynamics 
generates accurate results for the bcc iron lattice system and models the appropriate 
magnetization behaviors, we have confidence that this approach can be applied to the fcc UO2 
lattice system [7]. Further work is necessary to determine the underlying magnetic interactions 
of UO2, once that is complete then it allows for accurate spin and molecular dynamics 
simulations to be made of the UO2 species. 
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