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Abstract   

Measuring  the  history  of  cosmic  expansion  via  the  Baryon  Acoustic  Oscillation  (BAO)              
scale  from  a  three-dimensional  galaxy  map  is  a  well  established  technique  to  probe  the  nature  of                  
dark  energy.  In  fact,  a  forthcoming  galaxy  redshift  survey,  the  Subaru  Prime  Focus  Spectrograph                
(PFS),  is  designed  mainly  for  this  purpose.  An  essential  optimization  problem  in  such  galaxy                
redshift  surveys  is  the  target  selection.  Namely,  it  is  not  clear  how  we  should  select  our  targets  to                    
maximize  the  number  of  galaxies  which  provide  successful  redshift  measurement  in  a  desired               
cosmic  epoch,  while  avoiding  other  galaxies.  Taking  PFS  as  an  example,  we  apply  a  modern                 
machine  learning  algorithm  to  the  target  selection  problem.  In  this  project  we  analyze  how  well                 
machine  learning  could  optimize  the  PFS  survey  target  selection  compared  to  more  conventional               
methods,   and   show   that   our   new   approach   could   play   a   crucial   role   in   understanding   dark   energy.   
  

Introduction   
A  current  mystery  in  the  field  of  cosmology  is  the  nature  of  dark  energy,  a  mysterious                  

energy  component  that  is  counteracting  gravity  and  causing  the  expansion  of  the  Universe  to                
accelerate  over  time.  A  common  and  established  technique  to  measure  the  nature  of  dark  energy                 
is  to  measure  the  distance  to  galaxy  populations  using  the  Baryon  Acoustic  Oscillation  (BAO)                
scale  as  a  standard  ruler.  This  technique  has  been  successfully  used  in  the  Sloan  Digital  Sky                  
Survey   (eBOSS  Collaboration,  2020)   and  is  planned  to  be  used  several  upcoming  galaxy  surveys                
such  as  the  Hobby-Eberly  Telescope  Dark  Energy  Experiment (Hill  et  al.,  2005),  the  Dark                
Energy  Spectroscopic  Instrument  or  DESI   (Karim  et  al.,  2020)  and  the  Subaru  Prime  Focus                
Spectrograph  or  PFS   (Takada  et  al.,  2014).  Each  of  these  surveys  specifically  attempt  to  measure                 
the   redshifts   of   star-forming   galaxies   through   strong   emission   lines.   

An  important  step  in  each  of  these  surveys  is  the  target  selection.  To  efficiently  measure                 
emission  lines,  galaxies  that  are  likely  to  have  sufficiently  strong  emission  lines  in  a  certain                 
redshift  range  must  be  pre-selected  from  photometric  images  by  measuring  along  certain              
photometric  bands.  In  DESI,  for  example,  galaxy  flux  measurements  within  the  photometric              
bands  g,  r  and  i  are  analyzed  within  an  imaging  dataset  to  target  [OII]  emitters  with  z_red  values                    
-  or  fractional  changes  in  photon  wavelength  -  less  than  1.6  (Karim  et  al.,  2020).  PFS  meanwhile                   
has  the  advantage  of  having  a  near-infrared  camera  that  can  analyze  the  fluxes  within  the                 
photometric  bands  g,  r,  i,  z  and  y  -  with  galaxy  specific  measurements  denoted  as   g,  r,  i,  z  and   y  -                        
to  target  [OII]  emitters  with  z_red  values  between  0.6  and  2.4  in  Hyper-Suprime  Cam  (Takada  et                  
al.,   2014).   The   locations   of   these   bands   are   marked   in   Figure   1.     
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Figure  1:  Modeled  galaxy  spectra  at  different  redshifts  in  EL-COSMOS  (Saito  et  al.,  2020).  The  main  target  is  the                     
[OII]   3726-3729   line   at   a   wavelength   of   (1+z)*3726   Angstroms,   which   is   shown   in   the   colored   lines.   

   
In  addition,  the  PFS  cosmology  program  is  designed  to  have  two  visits  per  1.098  degrees                 

squared  field-of-view  (FoV)  with  a  15-minute  exposure  time,  allowing  4788  fibers  to  be  used  per                 
FoV.  Because  of  this  limited  number  of  available  spectrographic  fibers,  the  regions  of  space                
analyzed  by  PFS  must  be  as  clear  from  non-target  galaxies  as  possible,  while  still  containing                 
several  target  galaxies  (ideally  100%  of  the  target  galaxies  in  the  catalog).  The  distribution  of                 
target  and  non-target  galaxies  in  EL-COSMOS,  a  mock  galaxy  catalog  (Saito  et  al.,  2020),  can  be                  
seen   in   Figure   2:     

  
Figure   2:   A   histogram   of   galaxies   in   EL-COSMOS   along   several   combinations   of   photometric   bands.   
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 Though  Figure  2  shows  the  clustering  of  the  data  in  parts,  the  high  dimensionality  of  this                   

data  means  that  it  is  difficult  to  visualize  fully  in  a  single  representation.  This  means  that                  
efficiently  drawing  a  decision  region  within  g,  r,  i,  z  and   y  is  a  major  challenge.  In  the  field  of                      
data  science,  such  high-dimensional  datasets  are  often  explored  with  machine  learning             
algorithms  such  as  multilayer  perceptrons  and  decision  trees,  which  can  be  trained  in  a  computer                 
program  to  detect  and  conform  to  patterns  even  in  large  datasets.  Recently,  these  machine                
learning  algorithms  have  seen  use  in  astrophysical  and  cosmological  research,  such  as  signal               
processing   in   gravitational   wave   analysis.   

With  this  in  mind,  we  propose  using  machine  learning  algorithms  to  complete  an               
exploratory  analysis  of  a  mock  catalog  and  learn  patterns  that  can  distinguish  between  target  and                 
non-target  galaxies.  In  this  paper,  several  machine  learning  classifiers  of  varying  parameters  are               
used  to  separate  a  mock  dataset  into  non-target  galaxies,  Low-Z  (0.6<z_red<1.6)  target  galaxies,               
and  High-Z  (1.6<z_red<2.4)  target  galaxies,  with  the  goal  of  maximizing  the  number  of  collected                
galaxies  and  the  percentage  of  target  galaxies  within  a  sample,  with  a  particular  emphasis  on                 
High-Z  galaxies  to  make  full  use  of  the  capabilities  of  PFS  compared  to  experiments  that  cannot                  
read   High-Z   galaxies.   

  
Hypothesis   

If   machine   learning   classifiers   are   trained   on   a   mock   catalog   of   PFS   target   and   non-target   
galaxies   and   used   to   estimate   target   regions,   then   the   classifiers   will   outperform   approaches   that   
do   not   utilize   machine   learning   in   terms   of   collecting   a   large   sample   of   target   galaxies   with   a   
large   amount   of   High-Z   galaxies.   

  
Methodology   

At  first,  the  EL-COSMOS  Catalog  (Saito  et  al.,  2020)  was  used  to  train  and  test  several                  
machine  learning  classifiers  on   g,  r,   and   i .  Each  galaxy  within  the  catalog  was  labeled  as  0  if  it                     
was  not  a  PFS  target  galaxy,  or  1  if  the  galaxy  was  a  PFS  target.  The  catalog  was  also  randomly                      
separated  into  training  and  testing  datasets  such  that  70%  of  galaxies  within  the  catalog  were                 
used  to  build  algorithm  decision  boundaries,  while  the  remaining  30%  were  used  to  test  the                 
algorithms  and  ensure  the  classifiers  could  accurately  label  data  that  was  unseen  during  training.                
Explanations   of   these   algorithms   can   be   found   in   the   nomenclature   section   of   this   paper.     

Random  forests  were  then  selected  for  further  testing  due  to  the  relative  ease  of  training                 
them  and  their  competitive  accuracy.  Several  random  forests  were  trained  on  different              
combinations  of   g ,   r,  i,  z   and   y   values.  Some  algorithms  were  also  trained  on  a  mutation  of  the                     
original  labeling  procedure  where  class  1  (target)  galaxies  with  a  z_red  value  above  1.6  were                 
instead  labeled  2,  marking  them  as  High-Z  galaxies.  This  mutation  was  called  the  triple-class                
label.  Some  algorithms  also  used  a  version  of  the  catalog  where  missing  values  within  the                 
catalog   were   imputed   via   a   median-centered   simple   imputer.   

After  this  optimization  step,  a  random  forest  trained  on   g,  g-r,  r-i,  i-z   and   z-y  with  missing                   
values  imputed  in  became  the  baseline  forest  for  further  testing.  The  importance  of  a  feature                 
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within  the  random  forest  was  defined  as  the  percentage  of  nodes  within  the  forest  that  use  the                   
given  feature  to  draw  a  boundary.  The  importance  of  each  feature  within  the  baseline  forest  was                  
collected  and  compared  to  the  importances  of  a  forest  trained  on  the  imputed  catalog  and  only  on                   
g,  g-r   and   r-i  to  determine  if  the  dim  z  and  y  bands  gave  enough  information  to  be  useful  in                      
target   classification.   

The  baseline  forest  was  then  used  to  test  several  visualization  techniques  that  could  give                
qualitative  information  about  how  the  baseline  forest  defined  its  decision  regions,  such  as  a                
Voronoi  Tessellation  plot  of  a  PCA  projection  (Migut  et  al.,  2015).  Because  the  input  dataset  was                  
5-dimensional,  these  techniques  were  either  animated  or  projected  into  a  lower  feature  space.               
Using   these   results,   outliers   were   detected   and   the   general   range   of   the   dataset   was   analyzed.   

Finally,  the  decision  boundaries  of  the  baseline  forest  were  used  to  create  a  set  of  5-cubes                  
defining  regions  with  high  amounts  of  target  galaxies  and  low  amounts  of  non-target  galaxies.                
The  High-Z  galaxies  within  the  training  dataset  were  used  to  generate  a  5D  histogram.  The  peak                  
of  this  histogram  was  then  extracted  and  separated  further  into  5-cubes.  The  centers  of  these                 
5-cubes  were  then  sent  to  the  baseline  forest  for  classification.  Any  5-cubes  that  had  their  center                  
labelled  as  a  target  were  then  considered  to  be  target  regions  that  PFS  should  aim  for  during  its                    
galaxy  collection.  This  process  was  then  repeated  with  the  next  peak  of  the  histogram,  and                 
repeated  more  until  at  least  5700   galaxies  in  the  catalog  fell  within  the  boundaries.  The  process                  
was   then   repeated   using   the   Low-Z     target   histogram.   

  
Results   

Table  1   compares  the  accuracy  of  several  machine  learning  classifiers  trained  and  tested  on  the                 
galaxy   catalog.   Each   classifier   was   trained   in   a   dual-class   setting   and   only   on    g,   r    and    i :   

  

  
Table   1:   Results   of   different   classifiers   trained   on    g,   r    and    i .   
  
  

Classifier   Hyperparameters   Train   Acc.   Test   Acc.   

Random   Forest   25  decision  trees  of      
max   depth   25   

99.53%   95.54%   

KNN   Minkowski  metric    
with  p=2,  5  neighbors      
considered   

96.34%   94.95%   

AdaBoost   0.1   learning   rate   
500  decision  tree     
classifiers   of   depth   1   

93.68%   93.60%   

Bagging   25  decision  trees  of      
max   depth   25   

99.49%   95.56%   
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The  random  forest  was  then  retrained  multiple  times  with  different  parameters,  as  shown  in  Table                 
2:   
  

Table  2:  Results  of  different  random  forests  trained  on  the  EL-COSMOS  catalog.  Every  forest  contained  25  decision                   
trees.   
  
  

Table   3   shows   the   confusion   matrix   of   the   baseline   forest   of   predictions   using   the   test   dataset:   
  

Table   3:   A   confusion   matrix   of   the   baseline   forest   for   the   test   dataset.   
  
  
  
  
  
  
  
  
  
  
  

Dimensions   Imputes?   Classes   Train   Acc.   Test   Acc.   

g,   g-r,   r-i   No   Dual-Class   99.09%   95.16%   

g,   r,   i,   z,   y   No   Dual-Class   99.73%   95.98%   

g,   r,   i,   z,   y   No   Triple-Class   97.57%   94.60%   

g,   r,   i,   z,   y   Yes   Dual-Class   99.12%   95.70%   

g,   g-r,   r-i,   i-z,   z-y   No   Dual-Class   99.55%   97.46%   

g,   g-r,   r-i,   i-z,   z-y   Yes   Triple-Class   99.97%   97.64%   

Baseline   Forest   Confusion   Matrix   
on   Test   Data   

True   Class   

Non-Target   Low-Z   Target   High-Z   Target   

Predicted   Class   Non-Target   137602   801   479   

Low-Z   Target   1193   10087   25   

High-Z   Target   1191   43   4101   
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Figure   3     compares   the   importances   of   the   baseline   forest   and   a   forest   trained   on   g,   g-r,   and   r-i:   

  
Figure  3:  A  comparison  of  the  feature  importances,  or  percentage  of  tree  nodes  splitting  based  on  a  feature,  between                    
a   3D   baseline   forest   and   a   5D   baseline   forest.   

  
Figure  4   compares  the  false  positives  and  true  positives  found  by  a  baseline  forest  trained  on   g,  r,                    
i,  z   and  y  on  the  left  to  the  false  and  true  positives  found  by  a  baseline  forest  trained  on   g,  g-r,  r-i,                         
i-z    and    z-y    on   the   right:   

  
Figure  4:  A  comparison  of  the  distribution  of  false  and  true  positives  between  a  baseline  forest  trained  on  individual                     
photometric  bands  on  the  left  and  a  baseline  forest  trained  on  differences  between  photometric  bands  on  the  right.                    
Low-Z   predictions   are   marked   in   purple   and   High-Z   predictions   are   marked   in   yellow.  
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Figure  5   shows  the  results  of  the  baseline  forest  projected  into  two  dimensions  using  PCA                 
(principal  component  analysis)  with  decision  boundaries  estimated  using  a  Voronoi  Tessellation             
plot   (Migut   et   al.,   2015):   

  
Figure  5:  A  Voronoi  Tessellation  plot  (Migut  et  al.,  2015)  that  estimates  the  decision  boundary  of  the  baseline  forest                     
using  two  principal  components  found  in  PCA.  Low-Z  target  regions  are  marked  in  blue,  and  High-Z  target  regions                    
are   marked   in   yellow.   
  

Figure  6   compares  the  distribution  of  z_red  values  for  the  collected  galaxies  falling  within  the                 
5-cube  estimated  regions  of  the  machine  learning  classifiers  to  other  methods  used  in  the  past.                
The  red  line  represents  5-cubes  drawn  using  the  entire  target  galaxy  histogram  and  the  purple                 
line  represents  the  5-cubes  with  half  of  the  collected  galaxies  collected  only  from  the  High-Z                 
target   histogram:   

  
Figure  6:  A  comparison  of  several  galaxy  distributions  collected  from  the  EL-COSMOS  catalog  (Saito  et  al.,  2020)                   
using   different   methods   of   drawing   decision   regions.   
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Discussion   
As  shown  in  Table  1,  the  two  most  competitive  classifiers  were  a  random  forest  and  a                  

bagging  ensemble.  Adaboost  had  both  the  lowest  training  accuracy  and  test  accuracy,  while               
KNN  had  the  next  lowest  accuracy  on  both  training  and  testing.  It  should  be  noted  that  the                  
catalog  is  an  imbalanced  dataset,  with  non-target  galaxies  representing  about  90%  of  the  entire                
dataset;  therefore,  even  a  percentage  point  of  difference  between  the  accuracies  of  two  classifiers                
is  significant.  Even  with  this  in  mind,  bagging  and  random  forest  classifiers  performed  similarly,                
with  bagging  performing  slightly  better  on  testing.  However,  random  forests  were  still  chosen  as                
the  main  classifier  for  this  paper  due  to  their  simplicity,  speed  and  readability  compared  to                 
bagging.   

Of  the  random  forests  compared  in  Table  2,  it  was  determined  that  a  forest  trained  on  the                   
imputed  catalog  and  on   g,  g-r,  r-i,  i-z   and  z-y  was  most  optimal,  so  this  forest  was  used  as  the                      
baseline  classifier  for  the  rest  of  the  research.  Interestingly,  while  training  on  only   g,  g-r  and   r-i                   
produced  a  classifier  with  lower  accuracy  on  dual-class  data  compared  to  a  classifier  trained  on                 
all  five  bands  individually,  this  accuracy  decreased  significantly  in  a  triple-class  situation.              
However,  training  on   g,  g-r,  r-i,  i-z  and   z-y  produced  significantly  more  accurate  predictions  than                 
any  other  classifier,  and  had  further  increases  in  accuracy  when  trained  on  the  imputed  catalog                 
and  in  a  triple-class  setting.  Therefore,  the  differences  between  the  fluxes  along  the  photometric                
bands   are   needed   to   accurately   determine   the   location   of   High-Z   galaxies.   

This  idea  is  shown  further  in  Figure  4.  Along  combinations  of  individual  dimensions,               
Low-Z  and  High-Z  true  positives  always  followed  a  linear  pattern  and  had  significant  overlap.                
False  positives  also  followed  this  pattern  and  were  close  together,  indicating  that  the  catalog                
itself  likely  has  this  linear  pattern.  However,  when  differences  between  dimensions  were  taken               
into  account,  both  Low-Z  and  High-Z  true  positives  had  clearly  separable  distributions,  while  the                
sparsity  of  the  false  positives  indicates  that  those  mistakes  are  likely  noise  that  signs  that  the                  
entire   dataset   follows   the   pattern   picked   up   by   the   random   forest.   

Figure  3  highlights  that  the  dim  z  and  y  photometric  bands  contain  enough  information  to                 
justify  analyzing  them  during  galaxy  selection.  As  shown  in  the  graph,  cuts  along   i-z   and   z-y                  
were  present  in  about  25%  of  the  nodes  within  the  baseline  forest.  The  relative  importances  of   g,                   
g-r   and   r-i  were  also  all  smaller  in  the  baseline  forest  compared  to  the  forest  trained  on   g,  g-r   and                      
r-i .  Furthermore,  Table  2  shows  that  the  baseline  forest  was  nearly  2.5%  more  accurate  than  a                  
forest  trained  only  on   g,  g-r   and   r-i .  Therefore,   i-z   and   z-y  were  kept  during  the  decision  region                    
estimation.  The  baseline  forest  confusion  matrix  shown  in  Table  3  also  indicates  that  the  baseline                 
forest  could  accurately  identify  about  90%  of  the  target  galaxies  within  the  catalog  at  about  90%                  
confidence  showing  that,  on  its  own,  the  baseline  forest  is  very  capable  of  sorting  the  galaxy                  
dataset   and   collecting   patterns   within   it.   

As  an  abstract  way  of  showing  the  decision  boundaries,  Figure  5  indicates  that,  while                
Low-Z  galaxies  are  usually  separable  from  non-target  galaxies,  High-Z  galaxies  mostly  fall              
within  Low-Z  boundaries,  with  some  sparsely  spread  out  within  the  non-target  galaxies.  This               
helps  to  explain  why  High-Z  galaxies  were  more  difficult  to  predict  from  the  training  data,  as                  
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their  distribution  was  more  spread  out  and  significantly  intersected  with  both  Low-Z  and               
non-target   regions.   

Figure  6  indicates  that  the  machine  learning  approach  presented  within  this  paper  is               
competitive  with  other  methods  used  in  the  past.  Before  this  approach,  most  target  selection                
methods  performed  on  the  catalog  had  a  success  rate  (defined  as  the  percentage  of  galaxies                 
collected  by  PFS  in  the  decision  regions  that  are  target  galaxies)  of  0.5  or  0.6,  while  the  machine                    
learning  approach  had  a  success  rate  of  0.66,  which  shows  a  modest  improvement.  However,  less                 
galaxies  with  a  relatively  high  redshift  were  collected  with  the  cube-drawing  approach  compared               
to  previous  methods,  though  forcing  some  cubes  to  be  based  around  the  High-Z  target  histogram                 
helped   somewhat   in   this   regard.   

The  machine  learning  approach  is  not  without  limitations.  For  example,  the  current              
approach  of  estimating  the  decision  boundaries  of  the  baseline  forest  from  5-cubes  sacrifices               
much  of  the  information  contained  within  the  classifier,  and  takes  a  relatively  long  time  to                 
complete.  The  cubes  are  currently  drawn  at  a  resolution  of  0.2  along  each  individual  band,  but                  
reducing  this  resolution  to  make  the  estimation  more  accurate  increases  the  complexity  of  the                
algorithm  to  an  unreasonable  degree.  If  this  approach  is  used  in  the  future,  work  needs  to  be  done                    
to   get   as   close   as   possible   to   calculating   the   direct   decision   boundaries   from   the   classifier.   

Furthermore,  the  5-cubes  are  not  necessarily  adjacent  to  each  other,  so  the  decision               
boundary  found  with  the  current  approach  is  disjointed.  The  success  rate  is  also  calculated  from                 
the  entire  dataset  rather  than  just  the  testing  dataset.  This  means  that  the  5-cubes  rely  heavily  on                   
the  simulated  catalog  being  correct,  which  is  not  a  guarantee.  Outside  analysis  of  the  cubes                 
indicates  that  the  proportion  of  test  galaxies  falling  within  the  boundaries  is  about  equal  to  that  of                   
the  training  galaxies,  so  the  algorithm  does  have  working  protections  against  overfitting  to  the                
data,  but  work  should  be  done  on  adjusting  the  algorithm  to  create  one  continuous  decision                 
region.   

In  conclusion,  the  machine  learning  approach  shown  in  this  paper  is  a  competitive  way  to                 
draw  decision  boundaries  during  target  selection,  so  continuing  work  on  implementing  the              
algorithms  is  worthwhile.  While  estimating  the  decision  boundaries  from  the  classifiers  still              
needs  to  be  worked  on  to  surpass  other  methods  in  collecting  High-Z  target  galaxies,  the  base                  
classifiers  have  been  shown  to  accurately  distinguish  between  target  and  non-target  galaxies,              
while  also  detecting  significant  patterns  in  the  dataset.  In  the  future,  the  estimation  of  the                 
decision  boundaries  from  machine  learning  algorithms  should  be  more  based  on  direct  extraction               
from  the  algorithm  rather  than  simple  estimation,  and  new  algorithms  such  as  neural  networks                
may  also  be  important  to  study  for  PFS  target  selection.  Therefore,  while  the  hypothesis  was                 
only  partially  correct  in  that  decision  boundaries  based  on  machine  learning  algorithms  had  a                
higher  success  rate  than  conventional  methods  but  collected  slightly  less  High-Z  target  galaxies,               
this   could   change   with   more   experimentation.     
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Nomenclature   
Baryon  Acoustic  Oscillation  (BAO)  Scale:   A  method  of  measuring  cosmological  distances  using              
the  propagation  of  sound  waves  in  primordial  plasma  present  in  the  early  universe,  which  allows                
cosmological   expansion   to   be   accounted   for   in   measurements.   
  

[OII]  Emission  Line :  The  strength  of  light  energy  originating  from  singly  ionized  oxygen  at                
different   wavelengths.   

  
Photometric  Band:   An  interval  of  wavelengths  and  maximum  flux  values  where  the  flux  of  a                 
galaxy’s   light   emissions   can   be   measured   and   analyzed.   
  

Feature :  A  dimension  that  a  machine  learning  algorithm  is  trained  on  to  predict  class  labels  or                  
measurements   of   a   dependent   variable.   
  

KNN :  Abbreviation  for  K-Nearest  Neighbor,  a  machine  learning  algorithm  that  classifies  a  given               
sample  by  comparing  it  to  the   k  nearest  samples  in  the  training  dataset,  where   k  represents  a                   
positive   integer.   
  

Bagging :  An  ensemble  of  classifiers  that  are  each  trained  on  random  samples  of  the  training                 
dataset  taken  with  replacement.  The  ensemble  classifies  samples  using  a  majority  vote  among  its                
parts,  and  often  has  simpler  decision  boundaries  than  what  would  be  expected  from  an  individual                 
classifier.   
  

Decision  Tree :  A  machine  learning  algorithm  consisting  of  several  interconnected  nodes             
representing  one-dimensional  if-else  statements  designed  to  reduce  data  impurity  as  much  as              
possible.   
  

Random  Forest :  A  special  case  of  bagging  using  decision  trees  that  also  take  random  samples  of                  
the   features   of   the   training   dataset,   while   keeping   the   underlying   decision   tree   structure   intact.   
  

AdaBoost :  An  ensemble  of  extremely  weak  classifiers  trained  in  series  such  that  the  mistakes  of                 
earlier  classifiers  punish  later  classifiers  during  training,  often  resulting  in  more  complex              
decision   boundaries   than   in   the   base   classifier.   
  

5-Cube :  A  hypercube  defined  in  a  5-dimensional  space  such  that  the  shape  contains  80  equally                 
sized   edges.   
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